Lesson 14: Solving Inequalities

Classwork

Exercise 1

1. Consider the inequality $x^{2}+4 x \geq 5$.
a. Sift through some possible values to assign to x that ma ke this inequality a true statement. Find at least two positive values that work a nd at least two nega tive values that work.
b. Should your fourvalues also be solutions to the inequality $x(x+4) \geq 5$? Explain why or why not. Are they?
c. Should your fourvalues also be solutions to the inequality $4 x+x^{2} \geq 5$? Explain why or why not. Are they?
d. Should your four values also be solutions to the inequality $4 x+x^{2}-6 \geq-1$? Explain why or why not. Are they?
e. Should your fourvalues also be solutions to the inequality $12 x+3 x^{2} \geq 15$? Explain why or why not. Are they?

Example 1

What is the solution set to the inequality $5 q+10>20$? Express the solutionset in words, in set notation, and graphically on the number line.

Exercises 2-3

2. Find the sol ution set to each inequality. Express the solution in set notation and graphically on the number line.
a. $x+4 \leq 7$
b. $\frac{m}{3}+8 \neq 9$
c. $8 y+4<7 y-2$
d. $\quad 6(x-5) \geq 30$
e. $4(x-3)>2(x-2)$
3. Recall the discussion on all the strange ideas for what could be done to both sides of a n equation. Let's explore some of the sameissues here but with inequalities. Recall, inthis lesson, we have established that adding(or subtracting) and multiplying through by positive quantities does not change the solutionset of an inequality. We've made no comment a bout other operations.
a. Squaring: Do $B \leq 6$ and $B^{2} \leq 36$ have the same solutionset? If not, give an example of a number that is in one solution set but not the other.
b. Multiplying through by a negative number: Do $5-C>2$ and $-5+C>-2$ have the samesolutionset? If not, give an example of a number that is in one solution set but not the other.
c. Bonzo's ignoring exponents: Do $y^{2}<5^{2}$ a nd $y<5$ have the sa me solution set?

Example 2

Jojo was asked to solve $6 x+12<3 x+6$, for x. She a nswered as follows:
$6 x+12<3 x+6$
$6(x+2)<3(x+2) \quad$ Apply the distributive property.
$6<3$
Multiplythrough by $\frac{1}{x+2}$.
a. Since the finalline is a false sta tement, she deduced that there is no solution to this inequality (that the solutions et is empty).
What is the solution set to $6 x+12<3 x+6$?
b. Expla in why Jojo came to a n erroneous conclusion.

Example 3

Solve $-q \geq-7$, for q.

Exercises 4-7

4. Find the sol ution set to each inequality. Express the solution in set notation and graphically on the number line.
a. $-2 f<-16$
b. $-\frac{x}{12} \leq \frac{1}{4}$
c. $6-a \geq 15$
d. $-3(2 x+4)>0$

Recall the properties of inequality:

- Addition property of inequality:

If $A>B$, then $A+c>B+c$ for a ny real number c.

- Multiplication property of inequality:

If $A>B$, then $k A>k B$ for any positive real number k.
5. Use the properties of inequality to show that each of the following is true for any real numbers p and q.
a. If $p \geq q$, then $-p \leq-q$.
b. If $p<q$, then $-5 p>-5 q$.
c. If $p \leq q$, then $-0.03 p \geq-0.03 q$.
d. Based on the res ults from parts (a) through (c), how might we expand the mul tiplication property of inequality?
6. Solve $-4+2 t-14-18 t>-6-100 t$, for t in two different ways: first wi thout ever multiplying through by a negative number and then by first multiplying through by $-\frac{1}{2}$.
7. Solve $-\frac{x}{4}+8<\frac{1}{2}$, for x in two different ways: first without ever multiplying through by a nega tive number and then by first multiplying through by -4 .

Problem Set

1. Find the sol ution set to each inequality. Express the solution in set notation and graphically on the number line.
a. $2 x<10$
b. $-15 x \geq-45$
c. $\quad \frac{2}{3} x \neq \frac{1}{2}+2$
d. $-5(x-1) \geq 10$
e. $13 x<9(1-x)$
2. Find the mistake in the following set of steps in a student's attempt to solve $5 x+2 \geq x+\frac{2}{5}$, for x. What is the correctsolution set?
$5 x+2 \geq x+\frac{2}{5}$
$5\left(x+\frac{2}{5}\right) \geq x+\frac{2}{5} \quad$ (factoring out 5 on the left side)
$5 \geq 1 \quad$ (dividing by $\left(x+\frac{2}{5}\right)$)
So, the solution set is the set of all real numbers.
3. Solve $-\frac{x}{16}+1 \geq-\frac{5 x}{2}$, for x without multiplying by a negative number. Then, solve by multiplying through by -16 .
4. Lisa brought half of her savings to the bakery and bought 12 croissants for $\$ 14.20$. The a mount of money she brings home with her is more than $\$ 2.00$. Use an inequality to find how much money she ha din her savings before going to the bakery. (Write the inequality that represents the situation, a nd solve it.)
