$\qquad$ Date $\qquad$

## Lesson 1: What Lies Behind "Same Shape"?

## Exit Ticket

1. Why do we need a better definition for similarity than "same shape, not the same size"?
2. Use the diagram below. Let there be a dilation from center $O$ with scale factor $r=3$. Then, $\operatorname{Dilation}(P)=P^{\prime}$. In the diagram below, $|O P|=5 \mathrm{~cm}$. What is $\left|O P^{\prime}\right|$ ? Show your work.

3. Use the diagram below. Let there be a dilation from center $O$. Then, Dilation $(P)=P^{\prime}$. In the diagram below, $|O P|=18 \mathrm{~cm}$ and $\left|O P^{\prime}\right|=9 \mathrm{~cm}$. What is the scale factor $r$ ? Show your work.

$\qquad$ Date $\qquad$

## Lesson 2: Properties of Dilations

## Exit Ticket

1. Given center $O$ and quadrilateral $A B C D$, using a compass and ruler, dilate the figure from center $O$ by a scale factor of $r=2$. Label the dilated quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

2. Describe what you learned today about what happens to lines, segments, rays, and angles after a dilation.
$\qquad$ Date $\qquad$

## Lesson 3: Examples of Dilations

## Exit Ticket

1. Dilate circle $A$ from center $O$ by a scale factor $r=\frac{1}{2}$. Make sure to use enough points to make a good image of the original figure.

2. What scale factor would magnify the dilated circle back to the original size of circle $A$ ? How do you know?
$\qquad$ Date $\qquad$

## Lesson 4: Fundamental Theorem of Similarity (FTS)

## Exit Ticket

Steven sketched the following diagram on graph paper. He dilated points $B$ and $C$ from point $O$. Answer the following questions based on his drawing.

1. What is the scale factor $r$ ? Show your work.
2. Verify the scale factor with a different set of segments.

3. Which segments are parallel? How do you know?
4. Are $\angle O B C$ and $\angle O B^{\prime} C^{\prime}$ right angles? How do you know?

Name $\qquad$ Date $\qquad$

## Lesson 5: First Consequences of FTS

## Exit Ticket

In the diagram below, you are given center $O$ and ray $\overrightarrow{O A}$. Point $A$ is dilated by a scale factor $r=\frac{6}{4}$. Use what you know about FTS to find the location of point $A^{\prime}$.

$\qquad$
$\qquad$

## Lesson 6: Dilations on the Coordinate Plane

## Exit Ticket

1. The point $A(7,4)$ is dilated from the origin by a scale factor $r=3$. What are the coordinates of point $A^{\prime}$ ?
2. The triangle $A B C$, shown on the coordinate plane below, is dilated from the origin by scale factor $r=\frac{1}{2}$. What is the location of triangle $A^{\prime} B^{\prime} C^{\prime}$ ? Draw and label it on the coordinate plane.

$\qquad$ Date $\qquad$

## Lesson 7: Informal Proofs of Properties of Dilations

## Exit Ticket

Dilate $\angle A B C$ with center $O$ and scale factor $r=2$. Label the dilated angle, $\angle A^{\prime} B^{\prime} C^{\prime}$.


1. If $\angle A B C=72^{\circ}$, then what is the measure of $\angle A^{\prime} B^{\prime} C^{\prime}$ ?
2. If the length of segment $A B$ is 2 cm , what is the length of segment $A^{\prime} B^{\prime}$ ?
3. Which segments, if any, are parallel?
