Date_____

Lesson 1: What Lies Behind "Same Shape"?

Exit Ticket

1. Why do we need a better definition for similarity than "same shape, not the same size"?

2. Use the diagram below. Let there be a dilation from center *O* with scale factor r = 3. Then, Dilation(P) = P'. In the diagram below, |OP| = 5 cm. What is |OP'|? Show your work.

3. Use the diagram below. Let there be a dilation from center *O*. Then, Dilation(P) = P'. In the diagram below, |OP| = 18 cm and |OP'| = 9 cm. What is the scale factor *r*? Show your work.

Lesson 1: What Lies Behind "Same Shape"?

Date_____

Lesson 2: Properties of Dilations

Exit Ticket

1. Given center *O* and quadrilateral *ABCD*, using a compass and ruler, dilate the figure from center *O* by a scale factor of r = 2. Label the dilated quadrilateral A'B'C'D'.

2. Describe what you learned today about what happens to lines, segments, rays, and angles after a dilation.

Date_____

Lesson 3: Examples of Dilations

Exit Ticket

1. Dilate circle A from center O by a scale factor $r = \frac{1}{2}$. Make sure to use enough points to make a good image of the original figure.

2. What scale factor would magnify the dilated circle back to the original size of circle *A*? How do you know?

Date_____

Lesson 4: Fundamental Theorem of Similarity (FTS)

Exit Ticket

Steven sketched the following diagram on graph paper. He dilated points B and C from point O. Answer the following questions based on his drawing.

1. What is the scale factor r? Show your work.

2. Verify the scale factor with a different set of segments.

- 3. Which segments are parallel? How do you know?
- 4. Are $\angle OBC$ and $\angle OB'C'$ right angles? How do you know?

Lesson 5: First Consequences of FTS

Exit Ticket

In the diagram below, you are given center O and ray \overrightarrow{OA} . Point A is dilated by a scale factor $r = \frac{6}{4}$. Use what you know about FTS to find the location of point A'.

Date _____

Lesson 6: Dilations on the Coordinate Plane

Exit Ticket

1. The point A(7, 4) is dilated from the origin by a scale factor r = 3. What are the coordinates of point A'?

2. The triangle *ABC*, shown on the coordinate plane below, is dilated from the origin by scale factor $r = \frac{1}{2}$. What is the location of triangle A'B'C'? Draw and label it on the coordinate plane.

Date_____

Lesson 7: Informal Proofs of Properties of Dilations

Exit Ticket

Dilate $\angle ABC$ with center O and scale factor r = 2. Label the dilated angle, $\angle A'B'C'$.

- 1. If $\angle ABC = 72^\circ$, then what is the measure of $\angle A'B'C'$?
- 2. If the length of segment AB is 2 cm, what is the length of segment A'B'?
- 3. Which segments, if any, are parallel?

