\qquad
\qquad

Lesson 1: Exponential Notation

Exit Ticket

1.

a. Express the following in exponential notation:

$$
\underbrace{(-13) \times \cdots \times(-13)}_{35 \text { times }} .
$$

b. Will the product be positive or negative? Explain.
2. Fill in the blank:

$$
\underbrace{\frac{2}{3} \times \cdots \times \frac{2}{3}}_{- \text {times }}=\left(\frac{2}{3}\right)^{4}
$$

3. Arnie wrote:

$$
\underbrace{(-3.1) \times \cdots \times(-3.1)}_{4 \text { times }}=-3.1^{4}
$$

Is Arnie correct in his notation? Why or why not?
\qquad
\qquad

Lesson 2: Multiplication of Numbers in Exponential Form

Exit Ticket

Write each expression using the fewest number of bases possible.

1. Let a and b be positive integers. $23^{a} \times 23^{b}=$
2. $5^{3} \times 25=$
3. Let x and y be positive integers and $x>y \cdot \frac{11^{x}}{11^{y}}=$
4. $\frac{2^{13}}{2^{3}}=$
\qquad

Lesson 3: Numbers in Exponential Form Raised to a Power

Exit Ticket

Write each expression as a base raised to a power or as the product of bases raised to powers that is equivalent to the given expression.

1. $\left(9^{3}\right)^{6}=$
2. $\left(113^{2} \times 37 \times 51^{4}\right)^{3}=$
3. Let x, y, z be numbers. $\left(x^{2} y z^{4}\right)^{3}=$
4. Let x, y, z be numbers and let m, n, p, q be positive integers. $\left(x^{m} y^{n} z^{p}\right)^{q}=$
5. $\frac{4^{8}}{5^{8}}=$
\qquad Date \qquad

Lesson 4: Numbers Raised to the Zeroth Power

Exit Ticket

1. Simplify the following expression as much as possible.

$$
\frac{4^{10}}{4^{10}} \cdot 7^{0}=
$$

2. Let a and b be two numbers. Use the distributive law and then the definition of zeroth power to show that the numbers $\left(a^{0}+b^{0}\right) a^{0}$ and $\left(a^{0}+b^{0}\right) b^{0}$ are equal.
\qquad

Lesson 5: Negative Exponents and the Laws of Exponents

Exit Ticket

Write each expression in a simpler form that is equivalent to the given expression.

1. $76543^{-4}=$
2. Let f be a nonzero number. $f^{-4}=$
3. $671 \times 28796^{-1}=$
4. Let a, b be numbers $(b \neq 0) . a b^{-1}=$
5. Let g be a nonzero number. $\frac{1}{g^{-1}}=$
\qquad Date \qquad

Lesson 6: Proofs of Laws of Exponents

Exit Ticket

1. Show directly that for any nonzero integer $x, x^{-5} \cdot x^{-7}=x^{-12}$.
2. Show directly that for any nonzero integer $x,\left(x^{-2}\right)^{-3}=x^{6}$.
