Product of Powers

$$
a^{m} \cdot a^{n}=a^{m+n}
$$

When multiplying exponents with similar bases, you add the exponents.
$4^{3} \cdot 4^{5}=$
$11^{-3} \cdot 11^{5}=$
$7^{9} \cdot 7^{1}=$
$b^{-2} \cdot b^{-4}=$
$x^{12} \cdot x^{3}=$

$$
5^{5} \cdot 5^{5}=
$$

Quotient of Powers

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

When dividing exponents with similar bases, you subtract the exponents.

$$
\begin{array}{ll}
\frac{8^{20}}{8^{4}}= & \frac{y^{15}}{y^{3}}= \\
\frac{c^{3}}{c^{-4}}= & x^{8} \div x^{5}= \\
7^{11} \div 7^{6}= & \frac{100^{300}}{100^{200}}=
\end{array}
$$

Power of a Power

$\left(a^{m}\right)^{n}=a^{m \cdot n}$
When you have an exponent raised to another power, you multiply the powers.
$\left(14^{2}\right)^{2}=$
$\left(m^{4}\right)^{3}=$
$\left(8^{3}\right)^{10}=$
$\left(13^{-2}\right)^{-3}=$
$\left(t^{-2}\right)^{6}=$
$\left(5^{100}\right)^{2}=$

Power of a Product
 $(a b)^{m}=a^{m} b^{m}$

When raising multiple bases to a power, all bases get the power.
$(2 a)^{4}=$
$(10 g)^{5}=$
$\left(x^{2} y^{3}\right)^{5}=$
$(4 h)^{3}=$
$(7 r)^{2}=$
$\left(3 a^{5} b^{7}\right)^{3}=$
Power of a Quotient
$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$

When raising a fraction to a power, both the numerator and the denominator are raised to the power.
$\left(\frac{2}{3}\right)^{3}=$
$\left(\frac{12}{7}\right)^{11}=$
$\left(\frac{5}{6}\right)^{10}=$
$\left(\frac{w}{v}\right)^{t}=$
$\left(\frac{x}{y}\right)^{4}=$
$\left(\frac{3}{8}\right)^{2}=$

Negative Exponent

$$
a^{-m}=\frac{1}{a^{m}}, a \neq 0
$$

A base raised to a negative exponent is equal to the reciprocal of the same base raised to the positive version of the exponent.
$6^{-2}=$
$S^{-19}=$
$t^{-23}=$
$3^{-4}=$
$2^{-6}=$
$12^{-2}=$

Negative Base

$(-3)^{2}=9$, and $-3^{2}=-9$
When raising a negative base inside parenthesis, you raise the negative number to a power. A negative sign not inside parenthesis is not raised.
$-3^{3}=$
$-10^{4}=$
$-5^{3}=$
$-1^{22}=$
$-2^{5}=$
$-134^{1}=$

Zero Exponent

$$
a^{0}=1, a \neq 0
$$

Any number -- except zero -- when raised to the power of zero equals one. A negative number would equal negative one.
$-13.6^{0}=$
$-77^{0}=$
$353,018^{0}=$
$\pi^{0}=$
$1^{0}=$
$. \overline{54}^{0}=$

