Product of Powers

$$a^m \cdot a^n = a^{m+n}$$

When multiplying exponents with similar bases, you add the exponents.

 $4^{3} \cdot 4^{5} = 11^{-3} \cdot 11^{5} =$ $7^{9} \cdot 7^{1} = b^{-2} \cdot b^{-4} =$ $x^{12} \cdot x^{3} = 5^{5} \cdot 5^{5} =$

Quotient of Powers $\frac{a^m}{a^n} = a^{m-n}$

When dividing exponents with similar bases, you subtract the exponents.

Power of a Power

 $(a^m)^n = a^{m \cdot n}$

When you have an exponent raised to another power, you multiply the powers.

$(14^2)^2 =$	$(m^4)^3 =$
$(8^3)^{10} =$	$(13^{-2})^{-3} =$
$(t^{-2})^6 =$	$(5^{100})^2 =$

Power of a Product

$$(ab)^m = a^m b^m$$

When raising multiple bases to a power, all bases get the power.

$(10g)^5 =$
$(4h)^3 =$
$(3a^5b^7)^3 =$

Power of a Quotient $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

When raising a fraction to a power, both the numerator and the denominator are raised to the power.

Negative Exponent $a^{-m} = \frac{1}{a^m}, a \neq 0$

A base raised to a negative exponent is equal to the reciprocal of the same base raised to the positive version of the exponent.

 $6^{-2} = s^{-19} = t^{-23} = 3^{-4} = 12^{-6} = 12^{-2} =$

Negative Base $(-3)^2 = 9$, and $-3^2 = -9$

When raising a negative base inside parenthesis, you raise the negative number to a power. A negative sign not inside parenthesis is not raised.

 $-3^{3} = -10^{4} = -10^{3} = -12^{2} = -2^{5} = -134^{1} = -134^$

Zero Exponent

$$a^0 = 1, a \neq 0$$

Any number -- except zero -- when raised to the power of zero equals one. A negative number would equal negative one.

 $-13.6^{0} = -77^{0} =$ $353,018^{0} = 1^{0} =$ $\pi^{0} = .54^{0} =$