Lesson 10: Sequences of Rigid Motions

Classwork

Exercises

1. In the following picture, triangle $A B C$ can be traced onto a transparency and mapped onto triangle $A^{\prime} B^{\prime} C^{\prime}$. Which basic rigid motion, or sequence of, would map one triangle onto the other?

2. In the following picture, triangle $A B C$ can be traced onto a transparency and mapped onto triangle $A^{\prime} B^{\prime} C^{\prime}$. Which basic rigid motion, or sequence of, would map one triangle onto the other?

3. In the following picture, triangle $A B C$ can be traced onto a transparency and mapped onto triangle $A^{\prime} B^{\prime} C^{\prime}$. Which basic rigid motion, or sequence of, would map one triangle onto the other?

4. In the following picture, we have two pairs of triangles. In each pair, triangle $A B C$ can be traced onto a transparency and mapped onto triangle $A^{\prime} B^{\prime} C^{\prime}$.
Which basic rigid motion, or sequence of, would map one triangle onto the other?
Scenario 1:

Scenario 2:

5. Let two figures $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be given so that the length of curved segment $A C$ equals the length of curved segment $A^{\prime} C^{\prime},|\angle B|=\left|\angle B^{\prime}\right|=80^{\circ}$, and $|A B|=\left|A^{\prime} B^{\prime}\right|=5$. With clarity and precision, describe a sequence of rigid motions that would map figure $A B C$ onto figure $A^{\prime} B^{\prime} C^{\prime}$.

Problem Set

1. Let there be the translation along vector \vec{v}, let there be the rotation around point $A,-90$ degrees (clockwise), and let there be the reflection across line L. Let S be the figure as shown below. Show the location of S after performing the following sequence: a translation followed by a rotation followed by a reflection.

2. Would the location of the image of S in the previous problem be the same if the translation was performed last instead of first; that is, does the sequence, translation followed by a rotation followed by a reflection, equal a rotation followed by a reflection followed by a translation? Explain.
3. Use the same coordinate grid to complete parts (a)-(c).

a. Reflect triangle $A B C$ across the vertical line, parallel to the y-axis, going through point $(1,0)$. Label the transformed points A, B, C as $A^{\prime}, B^{\prime}, C^{\prime}$, respectively.
b. Reflect triangle $A^{\prime} B^{\prime} C^{\prime}$ across the horizontal line, parallel to the x-axis going through point $(0,-1)$. Label the transformed points of $A^{\prime}, B^{\prime}, C^{\prime}$ as $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, respectively.
c. Is there a single rigid motion that would map triangle $A B C$ to triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$?
