Lesson 11: Efficacy of Scientific Notation

Classwork

Exercise 1

The mass of a proton is

0.000 000 000 000 000 000 000 000 001 672 622 kg.

In scientific notation it is

Exercise 2

The mass of an electron is

In scientific notation it is

Exercise 3

Write the ratio that compares the mass of a proton to the mass of an electron.

Exercise 4

Compute how many times heavier a proton is than an electron (i.e., find the value of the ratio). Round your final answer to the nearest one.

Example 2

The U.S. national debt as of March 23, 2013, rounded to the nearest dollar, is \$16,755,133,009,522. According to the 2012 U.S. census, there are about 313,914,040 U.S. citizens. What is each citizen's approximate share of the debt?

$$\frac{1.6755 \times 10^{13}}{3.14 \times 10^8} = \frac{1.6755}{3.14} \times \frac{10^{13}}{10^8}$$
$$= \frac{1.6755}{3.14} \times 10^5$$
$$= 0.533598... \times 10^5$$
$$\approx 0.5336 \times 10^5$$
$$= 53360$$

Each U.S. citizen's share of the national debt is about \$53,360.

Exercise 5

The geographic area of California is 163,696 sq. mi., and the geographic area of the U.S. is 3,794,101 sq. mi. Let's round off these figures to 1.637×10^5 and 3.794×10^6 . In terms of area, roughly estimate how many Californias would make up one U.S. Then compute the answer to the nearest ones.

Exercise 6

The average distance from Earth to the moon is about 3.84×10^5 km, and the distance from Earth to Mars is approximately 9.24×10^7 km in year 2014. On this simplistic level, how much farther is traveling from Earth to Mars than from Earth to the moon?

Problem Set

- 1. There are approximately 7.5×10^{18} grains of sand on Earth. There are approximately 7×10^{27} atoms in an average human body. Are there more grains of sand on Earth or atoms in an average human body? How do you know?
- 2. About how many times more atoms are in a human body compared to grains of sand on Earth?
- 3. Suppose the geographic areas of California and the U.S. are 1.637×10^5 and 3.794×10^6 sq. mi., respectively. California's population (as of 2012) is approximately 3.804×10^7 people. If population were proportional to area, what would be the U.S. population?
- 4. The actual population of the U.S. (as of 2012) is approximately 3.14×10^8 . How does the population density of California (i.e., the number of people per square mile) compare with the population density of the U.S.?

