Lesson 12: Linear Equations in Two Variables

Classwork

Opening Exercise

Emily tells you that she scored 32 points in a basketball game. Write down all the possible ways she could have scored 32 with only two- and three-point baskets. Use the table below to organize your work.

Number of Two-Pointers	Number of Three-Pointers

Let x be the number of two-pointers and y be the number of three-pointers that Emily scored. Write an equation to represent the situation.

Exploratory Challenge/Exercises

1. Find five solutions for the linear equation $x+y=3$, and plot the solutions as points on a coordinate plane.

\boldsymbol{x}	Linear Equation: $x+y=3$	\boldsymbol{y}

2. Find five solutions for the linear equation $2 x-y=10$, and plot the solutions as points on a coordinate plane.

\boldsymbol{x}	Linear Equation: $2 x-y=10$	\boldsymbol{y}

3. Find five solutions for the linear equation $x+5 y=21$, and plot the solutions as points on a coordinate plane.

\boldsymbol{x}	Linear Equation: $x+5 y=21$	\boldsymbol{y}

4. Consider the linear equation $\frac{2}{5} x+y=11$.
a. Will you choose to fix values for x or y ? Explain.
b. Are there specific numbers that would make your computational work easier? Explain.
c. Find five solutions to the linear equation $\frac{2}{5} x+y=11$, and plot the solutions as points on a coordinate plane.

\boldsymbol{x}	Linear Equation: $\frac{2}{5} x+y=11$	y

5. At the store, you see that you can buy a bag of candy for $\$ 2$ and a drink for $\$ 1$. Assume you have a total of $\$ 35$ to spend. You are feeling generous and want to buy some snacks for you and your friends.
a. Write an equation in standard form to represent the number of bags of candy, x, and the number of drinks, y, that you can buy with $\$ 35$.
b. Find five solutions to the linear equation from part (a), and plot the solutions as points on a coordinate plane.

\boldsymbol{x}	Linear Equation:	\boldsymbol{y}

Lesson Summary

A linear equation in two-variables x and y is in standard form if it is of the form $a x+b y=c$ for numbers a, b, and c, where a and b are both not zero. The numbers a, b, and c are called constants.

A solution to a linear equation in two variables is the ordered pair (x, y) that makes the given equation true. Solutions can be found by fixing a number for x and solving for y or fixing a number for y and solving for x.

Problem Set

1. Consider the linear equation $x-\frac{3}{2} y=-2$.
a. Will you choose to fix values for x or y ? Explain.
b. Are there specific numbers that would make your computational work easier? Explain.
c. Find five solutions to the linear equation $x-\frac{3}{2} y=-2$, and plot the solutions as points on a coordinate plane.

\boldsymbol{x}	Linear Equation: $x-\frac{3}{2} y=-2$	\boldsymbol{y}

2. Find five solutions for the linear equation $\frac{1}{3} x+y=12$, and plot the solutions as points on a coordinate plane.
3. Find five solutions for the linear equation $-x+\frac{3}{4} y=-6$, and plot the solutions as points on a coordinate plane.
4. Find five solutions for the linear equation $2 x+y=5$, and plot the solutions as points on a coordinate plane.
5. Find five solutions for the linear equation $3 x-5 y=15$, and plot the solutions as points on a coordinate plane.
