Lesson 13: Angle Sum of a Triangle

Classwork

Concept Development

 $m \angle 1 + m \angle 2 + m \angle 3 = m \angle 4 + m \angle 5 + m \angle 6 = m \angle 7 + m \angle 8 + m \angle 9 = 180^{\circ}$

Note that the sum of the measures of angles 7 and 9 must equal 90° because of the known right angle in the right triangle.

Exploratory Challenge 1

Let triangle *ABC* be given. On the ray from *B* to *C*, take a point *D* so that *C* is between *B* and *D*. Through point *C*, draw a segment parallel to \overline{AB} , as shown. Extend the segments *AB* and *CE*. Line *AC* is the transversal that intersects the parallel lines.

- a. Name the three interior angles of triangle *ABC*.
- b. Name the straight angle.
- c. What kinds of angles are $\angle ABC$ and $\angle ECD$? What does that mean about their measures?
- d. What kinds of angles are $\angle BAC$ and $\angle ECA$? What does that mean about their measures?
- e. We know that $m \angle BCD = m \angle BCA + m \angle ECA + m \angle ECD = 180^\circ$. Use substitution to show that the measures of the three interior angles of the triangle have a sum of 180° .

Exploratory Challenge 2

The figure below shows parallel lines L_1 and L_2 . Let m and n be transversals that intersect L_1 at points B and C, respectively, and L_2 at point F, as shown. Let A be a point on L_1 to the left of B, D be a point on L_1 to the right of C, G be a point on L_2 to the left of F, and E be a point on L_2 to the right of F.

- a. Name the triangle in the figure.
- b. Name a straight angle that will be useful in proving that the sum of the measures of the interior angles of the triangle is 180°.
- c. Write your proof below.

Lesson Summary

All triangles have a sum of measures of the interior angles equal to 180°.

The proof that a triangle has a sum of measures of the interior angles equal to 180° is dependent upon the knowledge of straight angles and angle relationships of parallel lines cut by a transversal.

Problem Set

1. In the diagram below, line *AB* is parallel to line *CD*, that is, $L_{AB} \parallel L_{CD}$. The measure of $\angle ABC$ is 28°, and the measure of $\angle EDC$ is 42°. Find the measure of $\angle CED$. Explain why you are correct by presenting an informal argument that uses the angle sum of a triangle.

2. In the diagram below, line *AB* is parallel to line *CD*, that is, $L_{AB} \parallel L_{CD}$. The measure of $\angle ABE$ is 38°, and the measure of $\angle EDC$ is 16°. Find the measure of $\angle BED$. Explain why you are correct by presenting an informal argument that uses the angle sum of a triangle. (Hint: Find the measure of $\angle CED$ first, and then use that measure to find the measure of $\angle BED$.)

Lesson 13: Angle Sum of a Triangle

3. In the diagram below, line *AB* is parallel to line *CD*, that is, $L_{AB} \parallel L_{CD}$. The measure of $\angle ABE$ is 56°, and the measure of $\angle EDC$ is 22°. Find the measure of $\angle BED$. Explain why you are correct by presenting an informal argument that uses the angle sum of a triangle. (Hint: Extend the segment *BE* so that it intersects line *CD*.)

4. What is the measure of $\angle ACB$?

5. What is the measure of $\angle EFD$?

6. What is the measure of $\angle HIG$?

7. What is the measure of $\angle ABC$?

8. Triangle *DEF* is a right triangle. What is the measure of $\angle EFD$?

9. In the diagram below, Lines L_1 and L_2 are parallel. Transversals r and s intersect both lines at the points shown below. Determine the measure of $\angle JMK$. Explain how you know you are correct.

