Lesson 14: The Graph of a Linear Equation—Horizontal and

 Vertical Lines
Classwork

Exercises

1. Find at least four solutions to graph the linear equation $1 x+2 y=5$.
2. Find at least four solutions to graph the linear equation $1 x+0 y=5$.
3. What was different about the equations in Exercises 1 and 2? What effect did this change have on the graph?
4. Graph the linear equation $x=-2$.
5. Graph the linear equation $x=3$.
6. What will the graph of $x=0$ look like?
7. Find at least four solutions to graph the linear equation $2 x+1 y=2$.
8. Find at least four solutions to graph the linear equation $0 x+1 y=2$.
9. What was different about the equations in Exercises 7 and 8 ? What effect did this change have on the graph?
10. Graph the linear equation $y=-2$.
11. Graph the linear equation $y=3$.
12. What will the graph of $y=0$ look like?

Lesson Summary

In a coordinate plane with perpendicular x - and y-axes, a vertical line is either the y-axis or any other line parallel to the y-axis. The graph of the linear equation in two variables $a x+b y=c$, where $a=1$ and $b=0$, is the graph of the equation $x=c$. The graph of $x=c$ is the vertical line that passes through the point $(c, 0)$.

In a coordinate plane with perpendicular x-and y-axes, a horizontal line is either the x-axis or any other line parallel to the x-axis. The graph of the linear equation in two variables $a x+b y=c$, where $a=0$ and $b=1$, is the graph of the equation $y=c$. The graph of $y=c$ is the horizontal line that passes through the point $(0, c)$.

Problem Set

1. Graph the two-variable linear equation $a x+b y=c$, where $a=0, b=1$, and $c=-4$.
2. Graph the two-variable linear equation $a x+b y=c$, where $a=1, b=0$, and $c=9$.
3. Graph the linear equation $y=7$.
4. Graph the linear equation $x=1$.
5. Explain why the graph of a linear equation in the form of $y=c$ is the horizontal line, parallel to the x-axis passing through the point $(0, c)$.
6. Explain why there is only one line with the equation $y=c$ that passes through the point $(0, c)$.
