## Lesson 15: Informal Proof of the Pythagorean Theorem

## Classwork

## Example 1

Now that we know what the Pythagorean theorem is, let's practice using it to find the length of a hypotenuse of a right triangle.

Determine the length of the hypotenuse of the right triangle.


The Pythagorean theorem states that for right triangles $a^{2}+b^{2}=c^{2}$, where $a$ and $b$ are the legs, and $c$ is the hypotenuse. Then,

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
6^{2}+8^{2} & =c^{2} \\
36+64 & =c^{2} \\
100 & =c^{2} .
\end{aligned}
$$

Since we know that $100=10^{2}$, we can say that the hypotenuse $c$ is 10 .

## Example 2

Determine the length of the hypotenuse of the right triangle.


## Exercises 1-5

For each of the exercises, determine the length of the hypotenuse of the right triangle shown. Note: Figures are not drawn to scale.
1.

2.

3.

4.

5.


## Lesson Summary

Given a right triangle $A B C$ with $C$ being the vertex of the right angle, then the sides $\overline{A C}$ and $\overline{B C}$ are called the legs of $\triangle A B C$, and $\overline{A B}$ is called the hypotenuse of $\triangle A B C$.


Take note of the fact that side $a$ is opposite the angle $A$, side $b$ is opposite the angle $B$, and side $c$ is opposite the angle $C$.

The Pythagorean theorem states that for any right triangle, $a^{2}+b^{2}=c^{2}$.

## Problem Set

For each of the problems below, determine the length of the hypotenuse of the right triangle shown. Note: Figures are not drawn to scale.
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.


