Lesson 15: Informal Proof of the Pythagorean Theorem

Classwork

Example 1

Now that we know what the Pythagorean theorem is, let's practice using it to find the length of a hypotenuse of a right triangle.

Determine the length of the hypotenuse of the right triangle.

The Pythagorean theorem states that for right triangles $a^2 + b^2 = c^2$, where a and b are the legs, and c is the hypotenuse. Then,

$$a^{2} + b^{2} = c^{2}$$

$$6^{2} + 8^{2} = c^{2}$$

$$36 + 64 = c^{2}$$

$$100 = c^{2}.$$

Since we know that $100 = 10^2$, we can say that the hypotenuse *c* is 10.

Example 2

Determine the length of the hypotenuse of the right triangle.

Exercises 1–5

For each of the exercises, determine the length of the hypotenuse of the right triangle shown. Note: Figures are not drawn to scale.

Lesson Summary

Given a right triangle *ABC* with *C* being the vertex of the right angle, then the sides \overline{AC} and \overline{BC} are called the *legs* of $\triangle ABC$, and \overline{AB} is called the *hypotenuse* of $\triangle ABC$.

Take note of the fact that side a is opposite the angle A, side b is opposite the angle B, and side c is opposite the angle C.

The Pythagorean theorem states that for any right triangle, $a^2 + b^2 = c^2$.

Problem Set

For each of the problems below, determine the length of the hypotenuse of the right triangle shown. Note: Figures are not drawn to scale.

