Lesson 18: There Is Only One Line Passing Through a Given Point with a Given Slope

Classwork

Opening Exercise

Examine each of the graphs and their equations. Identify the coordinates of the point where the line intersects the y-axis. Describe the relationship between the point and the equation $y=m x+b$.
a. $\quad y=\frac{1}{2} x+3$

b. $y=-3 x+7$

c. $y=-\frac{2}{3} x-2$

d. $\quad y=5 x-4$

Example 1

Graph the equation $y=\frac{2}{3} x+1$. Name the slope and y-intercept point.

Example 2

Graph the equation $y=-\frac{3}{4} x-2$. Name the slope and y-intercept point.

Example 3

Graph the equation $y=4 x-7$. Name the slope and y-intercept point.

Exercises

1. Graph the equation $y=\frac{5}{2} x-4$.
a. Name the slope and the y-intercept point.
b. Graph the known point, and then use the slope to find a second point before drawing the line.

2. Graph the equation $y=-3 x+6$.
a. Name the slope and the y-intercept point.
b. Graph the known point, and then use the slope to find a second point before drawing the line.

3. The equation $y=1 x+0$ can be simplified to $y=x$. Graph the equation $y=x$.
a. Name the slope and the y-intercept point.
b. Graph the known point, and then use the slope to find a second point before drawing the line.

4. Graph the point $(0,2)$.

a. Find another point on the graph using the slope, $m=\frac{2}{7}$.
b. Connect the points to make the line.
c. Draw a different line that goes through the point $(0,2)$ with slope $m=\frac{2}{7}$. What do you notice?
5. A bank put $\$ 10$ into a savings account when you opened the account. Eight weeks later, you have a total of $\$ 24$. Assume you saved the same amount every week.
a. If y is the total amount of money in the savings account and x represents the number of weeks, write an equation in the form $y=m x+b$ that describes the situation.
b. Identify the slope and the y-intercept point. What do these numbers represent?
c. Graph the equation on a coordinate plane.

d. Could any other line represent this situation? For example, could a line through point $(0,10)$ with slope $\frac{7}{5}$ represent the amount of money you save each week? Explain.
6. A group of friends are on a road trip. After 120 miles, they stop to eat lunch. They continue their trip and drive at a constant rate of 50 miles per hour.
a. Let y represent the total distance traveled, and let x represent the number of hours driven after lunch. Write an equation to represent the total number of miles driven that day.
b. Identify the slope and the y-intercept point. What do these numbers represent?
c. Graph the equation on a coordinate plane.
d. Could any other line represent this situation? For example, could a line through point $(0,120)$ with slope 75 represent the total distance the friends drive? Explain.

Lesson Summary

The equation $y=m x+b$ is in slope-intercept form. The number m represents the slope of the graph, and the point $(0, b)$ is the location where the graph of the line intersects the y-axis.

To graph a line from the slope-intercept form of a linear equation, begin with the known point, $(0, b)$, and then use the slope to find a second point. Connect the points to graph the equation.

There is only one line passing through a given point with a given slope.

Problem Set

Graph each equation on a separate pair of x - and y-axes.

1. Graph the equation $y=\frac{4}{5} x-5$.
a. Name the slope and the y-intercept point.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
2. Graph the equation $y=x+3$.
a. Name the slope and the y-intercept point.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
3. Graph the equation $y=-\frac{4}{3} x+4$.
a. Name the slope and the y-intercept point.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
4. Graph the equation $y=\frac{5}{2} x$.
a. Name the slope and the y-intercept point.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
5. Graph the equation $y=2 x-6$.
a. Name the slope and the y-intercept point.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
6. Graph the equation $y=-5 x+9$.
a. Name the slope and the y-intercept point.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
7. Graph the equation $y=\frac{1}{3} x+1$.
a. Name the slope and the y-intercept point.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
8. Graph the equation $5 x+4 y=8$. (Hint: Transform the equation so that it is of the form $y=m x+b$.)
a. Name the slope and the y-intercept point.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
9. Graph the equation $-2 x+5 y=30$.
a. Name the slope and the y-intercept point.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
10. Let l and l^{\prime} be two lines with the same slope m passing through the same point P. Show that there is only one line with a slope m, where $m<0$, passing through the given point P. Draw a diagram if needed.
