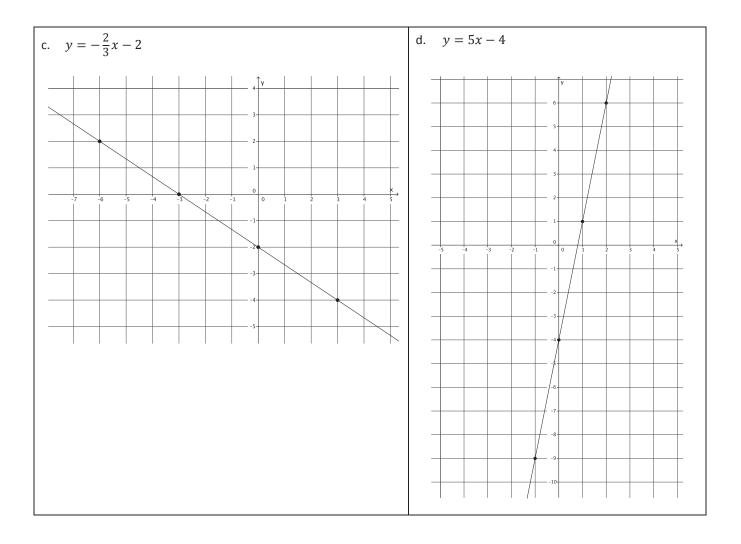
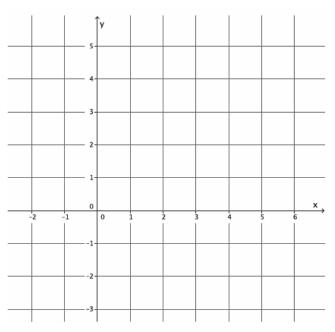

Lesson 18: There Is Only One Line Passing Through a Given Point with a Given Slope


Classwork

Opening Exercise

Examine each of the graphs and their equations. Identify the coordinates of the point where the line intersects the *y*-axis. Describe the relationship between the point and the equation y = mx + b.



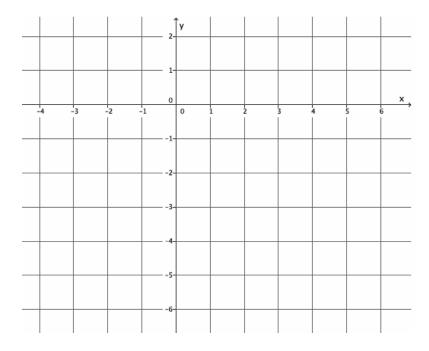
Example 1

Graph the equation $y = \frac{2}{3}x + 1$. Name the slope and *y*-intercept point.

Example 2

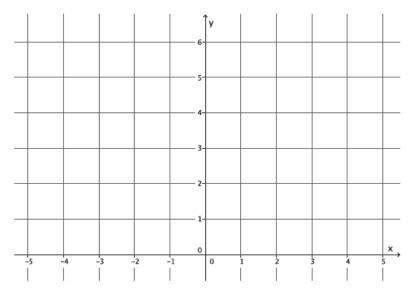
Graph the equation $y = -\frac{3}{4}x - 2$. Name the slope and *y*-intercept point.

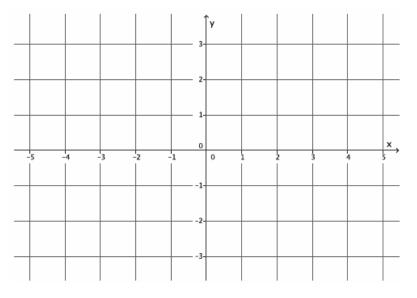
Example 3


Graph the equation y = 4x - 7. Name the slope and *y*-intercept point.

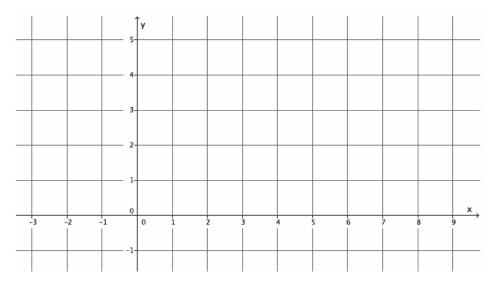
				3	1										
					У										
				2	-						 				
				1							x				
-5	-4	-3	-2	C _1		1	2	3	4	5	 	8	9 .	10 -	11
				-1	1										
				-2											
				-2											
				-3	,										
				-4											
				-6	i-										
				-6											
				-0	1										
				-7											
				-8											
				-9	4										-

Exercises


- 1. Graph the equation $y = \frac{5}{2}x 4$.
 - a. Name the slope and the *y*-intercept point.

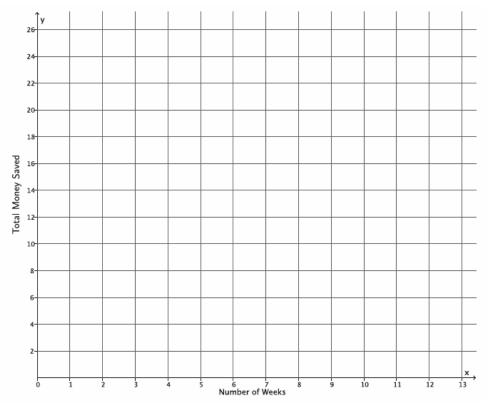

b. Graph the known point, and then use the slope to find a second point before drawing the line.

- 2. Graph the equation y = -3x + 6.
 - a. Name the slope and the *y*-intercept point.
 - b. Graph the known point, and then use the slope to find a second point before drawing the line.



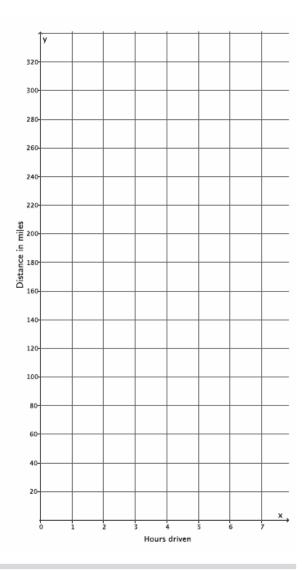
- 3. The equation y = 1x + 0 can be simplified to y = x. Graph the equation y = x.
 - a. Name the slope and the *y*-intercept point.
 - b. Graph the known point, and then use the slope to find a second point before drawing the line.

4. Graph the point (0, 2).


- a. Find another point on the graph using the slope, $m = \frac{2}{7}$.
- b. Connect the points to make the line.

- c. Draw a different line that goes through the point (0, 2) with slope $m = \frac{2}{7}$. What do you notice?
- 5. A bank put \$10 into a savings account when you opened the account. Eight weeks later, you have a total of \$24. Assume you saved the same amount every week.
 - a. If y is the total amount of money in the savings account and x represents the number of weeks, write an equation in the form y = mx + b that describes the situation.

b. Identify the slope and the *y*-intercept point. What do these numbers represent?


c. Graph the equation on a coordinate plane.

d. Could any other line represent this situation? For example, could a line through point (0,10) with slope $\frac{7}{5}$ represent the amount of money you save each week? Explain.

- 6. A group of friends are on a road trip. After 120 miles, they stop to eat lunch. They continue their trip and drive at a constant rate of 50 miles per hour.
 - a. Let *y* represent the total distance traveled, and let *x* represent the number of hours driven after lunch. Write an equation to represent the total number of miles driven that day.
 - b. Identify the slope and the *y*-intercept point. What do these numbers represent?
 - c. Graph the equation on a coordinate plane.
 - Could any other line represent this situation?
 For example, could a line through point (0, 120) with slope 75 represent the total distance the friends drive? Explain.

Lesson Summary

The equation y = mx + b is in slope-intercept form. The number *m* represents the slope of the graph, and the point (0, b) is the location where the graph of the line intersects the *y*-axis.

To graph a line from the slope-intercept form of a linear equation, begin with the known point, (0, b), and then use the slope to find a second point. Connect the points to graph the equation.

There is only one line passing through a given point with a given slope.

Problem Set

Graph each equation on a separate pair of x- and y-axes.

- 1. Graph the equation $y = \frac{4}{5}x 5$.
 - a. Name the slope and the *y*-intercept point.
 - b. Graph the known point, and then use the slope to find a second point before drawing the line.
- 2. Graph the equation y = x + 3.
 - a. Name the slope and the *y*-intercept point.
 - b. Graph the known point, and then use the slope to find a second point before drawing the line.
- 3. Graph the equation $y = -\frac{4}{3}x + 4$.
 - a. Name the slope and the *y*-intercept point.
 - b. Graph the known point, and then use the slope to find a second point before drawing the line.
- 4. Graph the equation $y = \frac{5}{2}x$.
 - a. Name the slope and the *y*-intercept point.
 - b. Graph the known point, and then use the slope to find a second point before drawing the line.
- 5. Graph the equation y = 2x 6.
 - a. Name the slope and the *y*-intercept point.
 - b. Graph the known point, and then use the slope to find a second point before drawing the line.
- 6. Graph the equation y = -5x + 9.
 - a. Name the slope and the *y*-intercept point.
 - b. Graph the known point, and then use the slope to find a second point before drawing the line.

- 7. Graph the equation $y = \frac{1}{3}x + 1$.
 - a. Name the slope and the *y*-intercept point.
 - b. Graph the known point, and then use the slope to find a second point before drawing the line.
- 8. Graph the equation 5x + 4y = 8. (Hint: Transform the equation so that it is of the form y = mx + b.)
 - a. Name the slope and the *y*-intercept point.
 - b. Graph the known point, and then use the slope to find a second point before drawing the line.
- 9. Graph the equation -2x + 5y = 30.
 - a. Name the slope and the *y*-intercept point.
 - b. Graph the known point, and then use the slope to find a second point before drawing the line.
- 10. Let l and l' be two lines with the same slope m passing through the same point P. Show that there is only one line with a slope m, where m < 0, passing through the given point P. Draw a diagram if needed.

