Lesson 1: Exponential Notation

Classwork

5^{6} means $5 \times 5 \times 5 \times 5 \times 5 \times 5$, and $\left(\frac{9}{7}\right)^{4}$ means $\frac{9}{7} \times \frac{9}{7} \times \frac{9}{7} \times \frac{9}{7}$.
You have seen this kind of notation before; it is called exponential notation. In general, for any number x and any positive integer n,

$$
x^{n}=\underbrace{(x \cdot x \cdots x)}_{n \text { times }}
$$

The number x^{n} is called x raised to the $n^{\text {th }}$ power, where n is the exponent of x in x^{n} and x is the base of x^{n}.

Exercise 1

$\underbrace{4 \times \cdots \times 4}_{7 \text { times }}=$

Exercise 2

$\underbrace{3.6 \times \cdots \times 3.6}_{- \text {times }}=3.6^{47}$

Exercise 6
$\underbrace{\frac{7}{2} \times \cdots \times \frac{7}{2}}_{21 \text { times }}=$

Exercise 7

$\underbrace{(-13) \times \cdots \times(-13)}_{6 \text { times }}=$

Exercise 8

$\underbrace{\left(-\frac{1}{14}\right) \times \cdots \times\left(-\frac{1}{14}\right)}_{10 \text { times }}=$

Exercise 9

$\underbrace{x \cdot x \cdots x}_{185 \text { times }}=$

Exercise 10
$\underbrace{x \cdot x \cdots x}_{\underbrace{}_{\text {times }}}=x^{n}$

Exercise 11

Will these products be positive or negative? How do you know?
$\underbrace{(-1) \times(-1) \times \cdots \times(-1)}_{12 \text { times }}=(-1)^{12}$
$\underbrace{(-1) \times(-1) \times \cdots \times(-1)}_{13 \text { times }}=(-1)^{13}$

Exercise 12

Is it necessary to do all of the calculations to determine the sign of the product? Why or why not?
$\underbrace{(-5) \times(-5) \times \cdots \times(-5)}_{95 \text { times }}=(-5)^{95}$
$\underbrace{(-1.8) \times(-1.8) \times \cdots \times(-1.8)}_{122 \text { times }}=(-1.8)^{122}$

Exercise 13

Fill in the blanks indicating whether the number is positive or negative.

If n is a positive even number, then $(-55)^{n}$ is \qquad .

If n is a positive odd number, then $(-72.4)^{n}$ is \qquad .

Exercise 14

Josie says that $\underbrace{(-15) \times \cdots \times(-15)}_{6 \text { times }}=-15^{6}$. Is she correct? How do you know?

Problem Set

1. Use what you know about exponential notation to complete the expressions below.

$$
\begin{aligned}
& \underbrace{(-5) \times \cdots \times(-5)}_{17 \text { times }}= \\
& \underbrace{3.7 \times \cdots \times 3.7}_{-\quad \text { times }}=3.7^{19} \\
& \underbrace{7 \times \cdots \times 7}_{\text {___ times }}=7^{45} \\
& \underbrace{6 \times \cdots \times 6}_{4 \text { times }}= \\
& \underbrace{4.3 \times \cdots \times 4.3}_{13 \text { times }}= \\
& \underbrace{(-1.1) \times \cdots \times(-1.1)}_{9 \text { times }}= \\
& \underbrace{\left(\frac{2}{3}\right) \times \cdots \times\left(\frac{2}{3}\right)}= \\
& \underbrace{\left(-\frac{11}{5}\right) \times \cdots \times\left(-\frac{11}{5}\right)}_{- \text {times }}=\left(-\frac{11}{5}\right)^{x} \\
& \underbrace{(-12) \times \cdots \times(-12)}_{-\ldots \text { times }}=(-12)^{15} \\
& \underbrace{a \times \cdots \times a}_{m \text { times }}=
\end{aligned}
$$

2. Write an expression with (-1) as its base that will produce a positive product, and explain why your answer is valid.
3. Write an expression with (-1) as its base that will produce a negative product, and explain why your answer is valid.
4. Rewrite each number in exponential notation using 2 as the base.
$8=$
$16=$ $32=$
$64=$
$128=$
$256=$
5. Tim wrote 16 as $(-2)^{4}$. Is he correct? Explain.
6. Could -2 be used as a base to rewrite 32 ? 64 ? Why or why not?
