Lesson 21: Some Facts About Graphs of Linear Equations in Two

Variables

Classwork

Example 1

Let a line l be given in the coordinate plane. What linear equation is the graph of line l ?

Example 2

Let a line l be given in the coordinate plane. What linear equation is the graph of line l ?

Lesson 21:

Example 3

Let a line l be given in the coordinate plane. What linear equation is the graph of line l ?

Example 4

Let a line l be given in the coordinate plane. What linear equation is the graph of line l ?

Exercises

1. Write the equation for the line l shown in the figure.

2. Write the equation for the line l shown in the figure.

3. Determine the equation of the line that goes through points $(-4,5)$ and $(2,3)$.
4. Write the equation for the line l shown in the figure.

5. A line goes through the point $(8,3)$ and has slope $m=4$. Write the equation that represents the line.

Lesson Summary

Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be the coordinates of two distinct points on a non-vertical line in a coordinate plane. We find the slope of the line by

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

This version of the slope formula, using coordinates of x and y instead of p and r, is a commonly accepted version.
As soon as you multiply the slope by the denominator of the fraction above, you get the following equation:

$$
m\left(x_{2}-x_{1}\right)=y_{2}-y_{1} .
$$

This form of an equation is referred to as the point-slope form of a linear equation.
Given a known (x, y), then the equation is written as

$$
m\left(x-x_{1}\right)=\left(y-y_{1}\right) .
$$

The following is slope-intercept form of a line:

$$
y=m x+b
$$

In this equation, m is slope, and $(0, b)$ is the y-intercept point.
To write the equation of a line, you must have two points, one point and slope, or a graph of the line.

Problem Set

1. Write the equation for the line l shown in the figure.

2. Write the equation for the line l shown in the figure.

3. Write the equation for the line l shown in the figure.

4. Triangle $A B C$ is made up of line segments formed from the intersection of lines $L_{A B}, L_{B C}$, and $L_{A C}$. Write the equations that represent the lines that make up the triangle.

5. Write the equation for the line that goes through point $(-10,8)$ with slope $m=6$.
6. Write the equation for the line that goes through point $(12,15)$ with slope $m=-2$.
7. Write the equation for the line that goes through point $(1,1)$ with slope $m=-9$.
8. Determine the equation of the line that goes through points $(1,1)$ and $(3,7)$.
