Lesson 2: Multiplication of Numbers in Exponential Form

Classwork

In general, if x is any number and m, n are positive integers, then

$$
x^{m} \cdot x^{n}=x^{m+n}
$$

because

$$
x^{m} \times x^{n}=\underbrace{(x \cdots x)}_{m \text { times }} \times \underbrace{(x \cdots x)}_{n \text { times }}=\underbrace{(x \cdots x)}_{m+n \text { times }}=x^{m+n}
$$

Exercise 1

$14^{23} \times 14^{8}=$

Exercise 2

$(-72)^{10} \times(-72)^{13}=$

Exercise 5

Let a be a number.
$a^{23} \cdot a^{8}=$

Exercise 6

Let f be a number.
$f^{10} \cdot f^{13}=$

Exercise 7

Let b be a number.
$b^{94} \cdot b^{78}=$

Exercise 8

Let x be a positive integer. If $(-3)^{9} \times(-3)^{x}=(-3)^{14}$, what is x ?

What would happen if there were more terms with the same base? Write an equivalent expression for each problem.

Exercise 9

$9^{4} \times 9^{6} \times 9^{13}=$

Exercise 10

$2^{3} \times 2^{5} \times 2^{7} \times 2^{9}=$

Can the following expressions be written in simpler form? If so, write an equivalent expression. If not, explain why not.

Exercise 11

$6^{5} \times 4^{9} \times 4^{3} \times 6^{14}=$

Exercise 14

$2^{4} \times 8^{2}=2^{4} \times 2^{6}=$

Exercise 12

$(-4)^{2} \cdot 17^{5} \cdot(-4)^{3} \cdot 17^{7}=$

Exercise 15

$3^{7} \times 9=3^{7} \times 3^{2}=$

Exercise 13

Exercise 16

$15^{2} \cdot 7^{2} \cdot 15 \cdot 7^{4}=$
$5^{4} \times 2^{11}=$

Exercise 17

Let x be a number. Rewrite the expression in a simpler form.
$\left(2 x^{3}\right)\left(17 x^{7}\right)=$

Exercise 18

Let a and b be numbers. Use the distributive law to rewrite the expression in a simpler form.
$a(a+b)=$

Exercise 19

Let a and b be numbers. Use the distributive law to rewrite the expression in a simpler form.
$b(a+b)=$

Exercise 20

Let a and b be numbers. Use the distributive law to rewrite the expression in a simpler form.
$(a+b)(a+b)=$

In general, if x is nonzero and m, n are positive integers, then

$$
\frac{x^{m}}{x^{n}}=x^{m-n}
$$

Exercise 21

$\frac{7^{9}}{7^{6}}=$

Exercise 23

$\frac{\left(\frac{8}{5}\right)^{9}}{\left(\frac{8}{5}\right)^{2}}=$

Exercise 24

$\frac{13^{5}}{13^{4}}=$

Exercise 25

Let a, b be nonzero numbers. What is the following number?
$\frac{\left(\frac{a}{b}\right)^{9}}{\left(\frac{a}{b}\right)^{2}}=$

Exercise 26

Let x be a nonzero number. What is the following number?
$\frac{x^{5}}{x^{4}}=$

Can the following expressions be written in simpler forms? If yes, write an equivalent expression for each problem. If not, explain why not.

Exercise 27

$\frac{2^{7}}{4^{2}}=\frac{2^{7}}{2^{4}}=$

Exercise 29

$\frac{3^{5} \cdot 2^{8}}{3^{2} \cdot 2^{3}}=$

Exercise 28

$\frac{3^{23}}{27}=\frac{3^{23}}{3^{3}}=$

Exercise 30

$\frac{(-2)^{7} \cdot 95^{5}}{(-2)^{5} \cdot 95^{4}}=$

Exercise 31

Let x be a number. Write each expression in a simpler form.
a. $\frac{5}{x^{3}}\left(3 x^{8}\right)=$
b. $\frac{5}{x^{3}}\left(-4 x^{6}\right)=$
c. $\frac{5}{x^{3}}\left(11 x^{4}\right)=$

Exercise 32

Anne used an online calculator to multiply $2000000000 \times 2000000000000$. The answer showed up on the calculator as $4 \mathrm{e}+21$, as shown below. Is the answer on the calculator correct? How do you know?

Problem Set

1. A certain ball is dropped from a height of x feet. It always bounces up to $\frac{2}{3} x$ feet. Suppose the ball is dropped from 10 feet and is stopped exactly when it touches the ground after the $30^{\text {th }}$ bounce. What is the total distance traveled by the ball? Express your answer in exponential notation.

Bounce	Computation of Distance Traveled in Previous Bounce	Total Distance Traveled (in feet)
1		
2		
3		
4		
30		
n		

2. If the same ball is dropped from 10 feet and is caught exactly at the highest point after the $25^{\text {th }}$ bounce, what is the total distance traveled by the ball? Use what you learned from the last problem.
3. Let a and b be numbers and $b \neq 0$, and let m and n be positive integers. Write each expression using the fewest number of bases possible:

$(-19)^{5} \cdot(-19)^{11}=$	$2.7^{5} \times 2.7^{3}=$
$\frac{7^{10}}{7^{3}}=$	$\left(\frac{1}{5}\right)^{2} \cdot\left(\frac{1}{5}\right)^{15}=$
$\left(-\frac{9}{7}\right)^{m} \cdot\left(-\frac{9}{7}\right)^{n}=$	$\frac{a b^{3}}{b^{2}}=$

4. Let the dimensions of a rectangle be $\left(4 \times(871209)^{5}+3 \times 49762105\right) \mathrm{ft}$. by $\left(7 \times(871209)^{3}-(49762105)^{4}\right) \mathrm{ft}$. Determine the area of the rectangle. (Hint: You do not need to expand all the powers.)
5. A rectangular area of land is being sold off in smaller pieces. The total area of the land is 2^{15} square miles. The pieces being sold are 8^{3} square miles in size. How many smaller pieces of land can be sold at the stated size? Compute the actual number of pieces.
