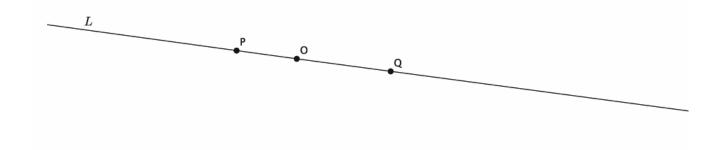
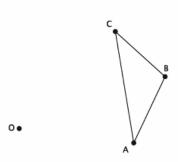

Lesson 2: Properties of Dilations

Classwork


Examples 1–2: Dilations Map Lines to Lines


Lesson 2: Properties of Dilations S.7

Example 3: Dilations Map Lines to Lines

Exercise

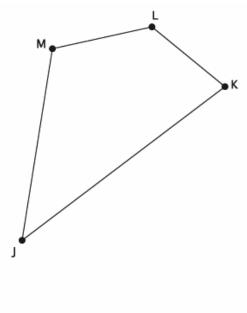
Given center O and triangle ABC, dilate the triangle from center O with a scale factor r=3.

a. Note that the triangle ABC is made up of segments AB, BC, and CA. Were the dilated images of these segments still segments?

Lesson 2: Properties of Dilations S.8

S.9

b.	Measure the length of the segments AB and $A^{\prime}B^{\prime}$. What do you notice? (Think about the definition of dilation.)
C.	Verify the claim you made in part (b) by measuring and comparing the lengths of segments BC and $B'C'$ and segments CA and $C'A'$. What does this mean in terms of the segments formed between dilated points?
d.	Measure $\angle ABC$ and $\angle A'B'C'$. What do you notice?
e.	Verify the claim you made in part (d) by measuring and comparing the following sets of angles: (1) $\angle BCA$ and $\angle B'C'A'$ and (2) $\angle CAB$ and $\angle C'A'B'$. What does that mean in terms of dilations with respect to angles and their degrees?

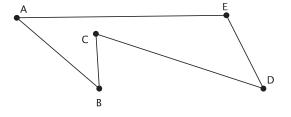

Lesson 2: Properties of Dilations

Lesson Summary

Dilations map lines to lines, rays to rays, and segments to segments. Dilations map angles to angles of the same degree.

Problem Set

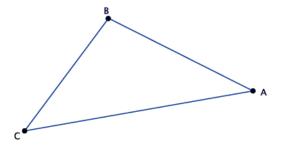
1. Use a ruler to dilate the following figure from center 0, with scale factor $r = \frac{1}{2}$.



Lesson 2: Properties of Dilations

S.10

2. Use a compass to dilate the figure ABCDE from center O, with scale factor r=2.



- a. Dilate the same figure, ABCDE, from a new center, O', with scale factor r=2. Use double primes (A''B''C''D''E'') to distinguish this image from the original.
- b. What rigid motion, or sequence of rigid motions, would map A''B''C''D''E'' to A'B'C'D'E'?

Lesson 2: Properties of Dilations S.11

- 3. Given center O and triangle ABC, dilate the figure from center O by a scale factor of $r=\frac{1}{4}$. Label the dilated triangle A'B'C'.

• 0

- 4. A line segment AB undergoes a dilation. Based on today's lesson, what is the image of the segment?
- 5. $\angle GHI$ measures 78°. After a dilation, what is the measure of $\angle G'H'I'$? How do you know?