Lesson 3: Numbers in Exponential Form Raised to a Power

Classwork

For any number x and any positive integers m and n,

because

$$(x^{m})^{n} = \underbrace{(x \cdot x \cdots x)^{n}}_{m \text{ times}}$$
$$= \underbrace{(x \cdot x \cdots x)}_{m \text{ times}} \times \cdots \times \underbrace{(x \cdot x \cdots x)}_{m \text{ times}}$$
$$= x^{nm}.$$

 $(x^m)^n = x^{nm}$

Exercise 1	Exercise 3
$(15^3)^9 =$	$(3.4^{17})^4 =$
Exercise 2	Exercise 4

$((-2)^5)^8 =$	Let <i>s</i> be a number.
· · · · /	$(s^{17})^4 =$

Exercise 5

Sarah wrote $(3^5)^7 = 3^{12}$. Correct her mistake. Write an exponential equation using a base of 3 and exponents of 5, 7, and 12 that would make her answer correct.

Exercise 6

A number y satisfies $y^{24} - 256 = 0$. What equation does the number $x = y^4$ satisfy?

For any numbers x and y, and positive integer n,

because

$$(xy)^{n} = \underbrace{(xy)\cdots(xy)}_{n \text{ times}}$$
$$= \underbrace{(x \cdot x \cdots x)}_{n \text{ times}} \cdot \underbrace{(y \cdot y \cdots y)}_{n \text{ times}}$$
$$= x^{n}y^{n}.$$

 $(xy)^n = x^n y^n$

Exercise 7	Exercise 10
$(11 \times 4)^9 =$	Let x be a number.
	$(5x)^7 =$
Exercise 8	Exercise 11
$(3^2 \times 7^4)^5 =$	Let x and y be numbers.
	$(5xy^2)^7 =$
Exercise 9	Exercise 12

Let <i>a</i> , <i>b</i> , and <i>c</i> be numbers.	Let <i>a</i> , <i>b</i> , and <i>c</i> be numbers.
$(3^2a^4)^5 =$	$(a^2bc^3)^4 =$

Exercise 13

Let x and y be numbers, $y \neq 0$, and let n be a positive integer. How is $\left(\frac{x}{y}\right)^n$ related to x^n and y^n ?

Problem Set

- 1. Show (prove) in detail why $(2 \cdot 3 \cdot 7)^4 = 2^4 3^4 7^4$.
- 2. Show (prove) in detail why $(xyz)^4 = x^4y^4z^4$ for any numbers x, y, z.
- 3. Show (prove) in detail why $(xyz)^n = x^n y^n z^n$ for any numbers x, y, and z and for any positive integer n.

