Lesson 3: Examples of Dilations

Classwork

Example 1

Dilate circle A from center O at the origin by scale factor $r=3$.

Exercises 1-2

1. Dilate ellipse E, from center O at the origin of the graph, with scale factor $r=2$. Use as many points as necessary to develop the dilated image of ellipse E.

2. What shape was the dilated image?

Exercise 3

3. Triangle $A B C$ has been dilated from center O by a scale factor of $r=\frac{1}{4}$ denoted by triangle $A^{\prime} B^{\prime} C^{\prime}$. Using a centimeter ruler, verify that it would take a scale factor of $r=4$ from center O to map triangle $A^{\prime} B^{\prime} C^{\prime}$ onto triangle $A B C$.

Lesson Summary

Dilations map circles to circles and ellipses to ellipses.
If a figure is dilated by scale factor r, we must dilate it by a scale factor of $\frac{1}{r}$ to bring the dilated figure back to the original size. For example, if a scale factor is $r=4$, then to bring a dilated figure back to the original size, we must dilate it by a scale factor $r=\frac{1}{4}$.

Problem Set

1. Dilate the figure from center O by a scale factor $r=2$. Make sure to use enough points to make a good image of the original figure.

0

2. Describe the process for selecting points when dilating a curved figure.
3. A figure was dilated from center O by a scale factor of $r=5$. What scale factor would shrink the dilated figure back to the original size?
4. A figure has been dilated from center O by a scale factor of $r=\frac{7}{6}$. What scale factor would shrink the dilated figure back to the original size?
5. A figure has been dilated from center O by a scale factor of $r=\frac{3}{10}$. What scale factor would magnify the dilated figure back to the original size?

