Lesson 4: Fundamental Theorem of Similarity (FTS)

Classwork

Exercise

In the diagram below, points R and S have been dilated from center O by a scale factor of $r=3$.

a. If $|O R|=2.3 \mathrm{~cm}$, what is $\left|O R^{\prime}\right|$?
b. If $|O S|=3.5 \mathrm{~cm}$, what is $\left|O S^{\prime}\right|$?
c. Connect the point R to the point S and the point R^{\prime} to the point S^{\prime}. What do you know about the lines that contain segments $R S$ and $R^{\prime} S^{\prime}$?
d. What is the relationship between the length of segment $R S$ and the length of segment $R^{\prime} S^{\prime}$?
e. Identify pairs of angles that are equal in measure. How do you know they are equal?

Lesson Summary

Theorem: Given a dilation with center O and scale factor r, then for any two points P and Q in the plane so that O, P, and Q are not collinear, the lines $P Q$ and $P^{\prime} Q^{\prime}$ are parallel, where $P^{\prime}=\operatorname{Dilation}(P)$ and $Q^{\prime}=\operatorname{Dilation}(Q)$, and furthermore, $\left|P^{\prime} Q^{\prime}\right|=r|P Q|$.

Problem Set

1. Use a piece of notebook paper to verify the fundamental theorem of similarity for a scale factor r that is $0<r<1$.
$\checkmark \quad$ Mark a point O on the first line of notebook paper.
$\checkmark \quad$ Mark the point P on a line several lines down from the center O. Draw a ray, $\overrightarrow{O P}$. Mark the point P^{\prime} on the ray and on a line of the notebook paper closer to O than you placed point P. This ensures that you have a scale factor that is $0<r<1$. Write your scale factor at the top of the notebook paper.
\checkmark Draw another ray, $\overrightarrow{O Q}$, and mark the points Q and Q^{\prime} according to your scale factor.
$\checkmark \quad$ Connect points P and Q. Then, connect points P^{\prime} and Q^{\prime}.
$\checkmark \quad$ Place a point, A, on the line containing segment $P Q$ between points P and Q. Draw ray $\overrightarrow{O A}$. Mark point A^{\prime} at the intersection of the line containing segment $P^{\prime} Q^{\prime}$ and ray $\overrightarrow{O A}$.
a. Are the lines containing segments $P Q$ and $P^{\prime} Q^{\prime}$ parallel lines? How do you know?
b. Which, if any, of the following pairs of angles are equal in measure? Explain.
i. $\angle O P Q$ and $\angle O P^{\prime} Q^{\prime}$
ii. $\angle O A Q$ and $\angle O A^{\prime} Q^{\prime}$
iii. $\angle O A P$ and $\angle O A^{\prime} P^{\prime}$
iv. $\angle O Q P$ and $\angle O Q^{\prime} P^{\prime}$
c. Which, if any, of the following statements are true? Show your work to verify or dispute each statement.
i. $\quad\left|O P^{\prime}\right|=r|O P|$
ii. $\quad\left|O Q^{\prime}\right|=r|O Q|$
iii. $\quad\left|P^{\prime} A^{\prime}\right|=r|P A|$
iv. $\left|A^{\prime} Q^{\prime}\right|=r|A Q|$
d. Do you believe that the fundamental theorem of similarity (FTS) is true even when the scale factor is $0<r<1$? Explain.
2. Caleb sketched the following diagram on graph paper. He dilated points B and C from center O.

a. What is the scale factor r ? Show your work.
b. Verify the scale factor with a different set of segments.
c. Which segments are parallel? How do you know?
d. Which angles are equal in measure? How do you know?
3. Points B and C were dilated from center O.

a. What is the scale factor r ? Show your work.
b. If $|O B|=5$, what is $\left|O B^{\prime}\right|$?
c. How does the perimeter of triangle $O B C$ compare to the perimeter of triangle $O B^{\prime} C^{\prime}$?
d. Did the perimeter of triangle $O B^{\prime} C^{\prime}=r \times($ perimeter of triangle $O B C)$? Explain.
