Lesson 4: Numbers Raised to the Zeroth Power

Classwork

We have shown that for any numbers x , y , and any positive integers m , n , the following holds		
$x^m \cdot x^n = x^{m+n}$	(1)	
$(x^m)^n = x^{mn}$	(2)	
$(xy)^n = x^n y^n.$	(3)	
Definition:		

Exercise 1

List all possible cases of whole numbers m and n for identity (1). More precisely, when m > 0 and n > 0, we already know that (1) is correct. What are the other possible cases of m and n for which (1) is yet to be verified?

Exercise 2

Check that equation (1) is correct for each of the cases listed in Exercise 1.

Exercise 3

Do the same with equation (2) by checking it case-by-case.

Exercise 4

Do the same with equation (3) by checking it case-by-case.

Exercise 5

Write the expanded form of 8,374 using exponential notation.

Exercise 6

Write the expanded form of 6,985,062 using exponential notation.

15

Problem Set

Let x, y be numbers $(x, y \neq 0)$. Simplify each of the following expressions.

1.	$\frac{y^{12}}{y^{12}} =$	2. $9^{15} \cdot \frac{1}{9^{15}} =$
3.	$(7(123456.789)^4)^0 =$	4. $2^2 \cdot \frac{1}{2^5} \cdot 2^5 \cdot \frac{1}{2^2} =$
5.	$\frac{x^{41}}{y^{15}} \cdot \frac{y^{15}}{x^{41}} =$	

