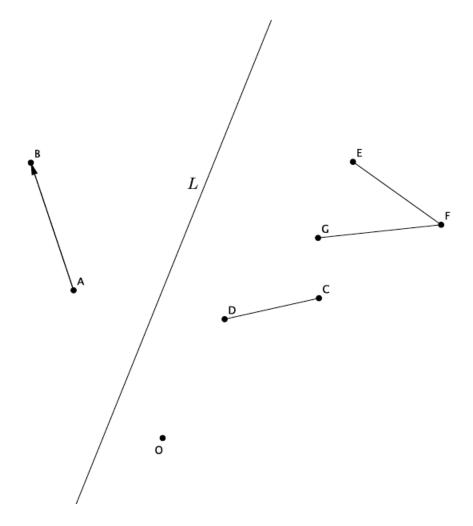
Lesson 5: Definition of Rotation and Basic Properties

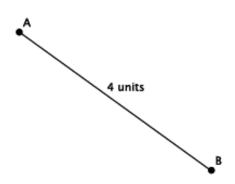
Classwork

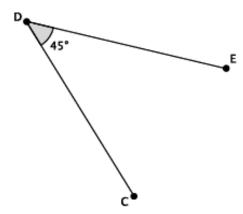
Exercises

1. Let there be a rotation of d degrees around center O. Let P be a point other than O. Select d so that $d \ge 0$. Find P' (i.e., the rotation of point P) using a transparency.

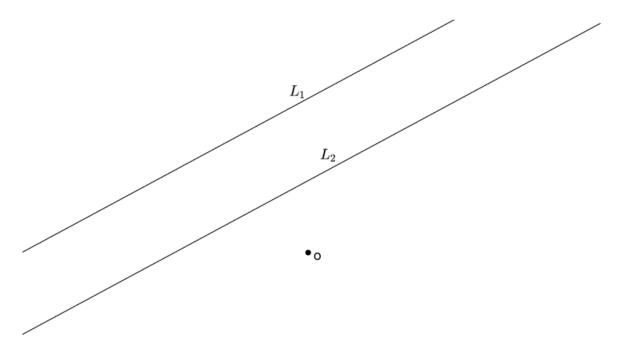


2. Let there be a rotation of d degrees around center O. Let P be a point other than O. Select d so that d < 0. Find P' (i.e., the rotation of point P) using a transparency.

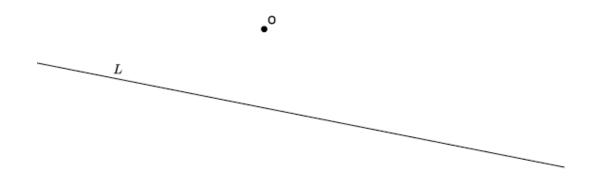

- 3. Which direction did the point P rotate when $d \ge 0$?
- 4. Which direction did the point P rotate when d < 0?
- 5. Let L be a line, \overrightarrow{AB} be a ray, \overrightarrow{CD} be a segment, and $\angle EFG$ be an angle, as shown. Let there be a rotation of d degrees around point O. Find the images of all figures when $d \ge 0$.



Lesson 5



a. What is the length of the rotated segment Rotation(AB)?


b. What is the degree of the rotated angle $Rotation(\angle CDE)$?

Lesson 5

7. Let L_1 and L_2 be parallel lines. Let there be a rotation by d degrees, where -360 < d < 360, about O. Is $(L_1)' \parallel (L_2)'$?

8. Let L be a line and O be the center of rotation. Let there be a rotation by d degrees, where $d \neq 180$ about O. Are the lines L and L' parallel?

Lesson Summary

Rotations require information about the center of rotation and the degree in which to rotate. Positive degrees of rotation move the figure in a counterclockwise direction. Negative degrees of rotation move the figure in a clockwise direction.

Basic Properties of Rotations:

- (Rotation 1) A rotation maps a line to a line, a ray to a ray, a segment to a segment, and an angle to an angle.
- (Rotation 2) A rotation preserves lengths of segments.
- (Rotation 3) A rotation preserves measures of angles.

When parallel lines are rotated, their images are also parallel. A line is only parallel to itself when rotated exactly 180° .

Terminology

ROTATION (DESCRIPTION): For a number d between 0 and 180, the *rotation of d degrees around center 0* is the transformation of the plane that maps the point O to itself, and maps each remaining point P of the plane to its image P' in the counterclockwise half-plane of ray \overrightarrow{OP} so that P and P' are the same distance away from O and the measurement of $\angle P'OP$ is d degrees.

The *counterclockwise half-plane* is the half-plane that lies to the left of \overrightarrow{OP} while moving along \overrightarrow{OP} in the direction from O to P.

Problem Set

1. Let there be a rotation by -90° around the center O.

• 0

Lesson 5 8 • 2

- 2. Explain why a rotation of 90 degrees around any point 0 never maps a line to a line parallel to itself.
- 3. A segment of length 94 cm has been rotated d degrees around a center O. What is the length of the rotated segment? How do you know?
- 4. An angle of size 124° has been rotated d degrees around a center O. What is the size of the rotated angle? How do you know?

