Lesson 5: Definition of Rotation and Basic Properties

Classwork

Exercises

1. Let there be a rotation of d degrees around center O. Let P be a point other than O. Select d so that $d \geq 0$. Find P^{\prime} (i.e., the rotation of point P) using a transparency.

2. Let there be a rotation of d degrees around center O. Let P be a point other than O. Select d so that $d<0$. Find P^{\prime} (i.e., the rotation of point P) using a transparency.

3. Which direction did the point P rotate when $d \geq 0$?
4. Which direction did the point P rotate when $d<0$?
5. Let L be a line, $\overrightarrow{A B}$ be a ray, $\overline{C D}$ be a segment, and $\angle E F G$ be an angle, as shown. Let there be a rotation of d degrees around point O. Find the images of all figures when $d \geq 0$.

6. Let $\overline{A B}$ be a segment of length 4 units and $\angle C D E$ be an angle of size 45°. Let there be a rotation by degrees, where $d<0$, about O. Find the images of the given figures. Answer the questions that follow.

a. What is the length of the rotated segment Rotation $(A B)$?
b. What is the degree of the rotated angle Rotation $(\angle C D E)$?
7. Let L_{1} and L_{2} be parallel lines. Let there be a rotation by d degrees, where $-360<d<360$, about O. Is $\left(L_{1}\right)^{\prime} \|\left(L_{2}\right)^{\prime}$?

8. Let L be a line and O be the center of rotation. Let there be a rotation by d degrees, where $d \neq 180$ about O. Are the lines L and L^{\prime} parallel?

Lesson Summary

Rotations require information about the center of rotation and the degree in which to rotate. Positive degrees of rotation move the figure in a counterclockwise direction. Negative degrees of rotation move the figure in a clockwise direction.

Basic Properties of Rotations:

- (Rotation 1) A rotation maps a line to a line, a ray to a ray, a segment to a segment, and an angle to an angle.
- (Rotation 2) A rotation preserves lengths of segments.
- (Rotation 3) A rotation preserves measures of angles.

When parallel lines are rotated, their images are also parallel. A line is only parallel to itself when rotated exactly 180°.

Terminology

Rotation (description): For a number d between 0 and 180, the rotation of d degrees around center 0 is the transformation of the plane that maps the point O to itself, and maps each remaining point P of the plane to its image P^{\prime} in the counterclockwise half-plane of ray $\overrightarrow{O P}$ so that P and P^{\prime} are the same distance away from O and the measurement of $\angle P^{\prime} O P$ is d degrees.

The counterclockwise half-plane is the half-plane that lies to the left of $\overrightarrow{O P}$ while moving along $\overrightarrow{O P}$ in the direction from O to P.

Problem Set

1. Let there be a rotation by -90° around the center O.

2. Explain why a rotation of 90 degrees around any point O never maps a line to a line parallel to itself.
3. A segment of length 94 cm has been rotated d degrees around a center O. What is the length of the rotated segment? How do you know?
4. An angle of size 124° has been rotated d degrees around a center O. What is the size of the rotated angle? How do you know?
