Lesson 6: Rotations of 180 Degrees

Classwork

Example 1

The picture below shows what happens when there is a rotation of 180° around center O.

Example 2

The picture below shows what happens when there is a rotation of 180° around center O, the origin of the coordinate plane.

Exercises 1–9

1. Using your transparency, rotate the plane 180 degrees, about the origin. Let this rotation be $Rotation_0$. What are the coordinates of $Rotation_0(2, -4)$?

2. Let $Rotation_0$ be the rotation of the plane by 180 degrees, about the origin. <u>Without</u> using your transparency, find $Rotation_0(-3,5)$.

3. Let $Rotation_0$ be the rotation of 180 degrees around the origin. Let L be the line passing through (-6, 6) parallel to the *x*-axis. Find $Rotation_0(L)$. Use your transparency if needed.

4. Let $Rotation_0$ be the rotation of 180 degrees around the origin. Let L be the line passing through (7,0) parallel to the *y*-axis. Find $Rotation_0(L)$. Use your transparency if needed.

5. Let $Rotation_0$ be the rotation of 180 degrees around the origin. Let *L* be the line passing through (0,2) parallel to the *x*-axis. Is *L* parallel to $Rotation_0(L)$?

6. Let $Rotation_0$ be the rotation of 180 degrees around the origin. Let *L* be the line passing through (4,0) parallel to the *y*-axis. Is *L* parallel to $Rotation_0(L)$?

7. Let $Rotation_0$ be the rotation of 180 degrees around the origin. Let *L* be the line passing through (0, -1) parallel to the *x*-axis. Is *L* parallel to $Rotation_0(L)$?

8. Let $Rotation_0$ be the rotation of 180 degrees around the origin. Is L parallel to $Rotation_0(L)$? Use your transparency if needed.

9. Let $Rotation_0$ be the rotation of 180 degrees around the center O. Is L parallel to $Rotation_0(L)$? Use your transparency if needed.

Lesson Summary

- A rotation of 180 degrees around *O* is the rigid motion so that if *P* is any point in the plane, *P*, *O*, and *Rotation*(*P*) are *collinear* (i.e., lie on the same line).
- Given a 180-degree rotation around the origin O of a coordinate system, R_0 , and a point P with coordinates (a, b), it is generally said that $R_0(P)$ is the point with coordinates (-a, -b).

THEOREM: Let O be a point not lying on a given line L. Then, the 180-degree rotation around O maps L to a line parallel to L.

Problem Set

Use the following diagram for Problems 1–5. Use your transparency as needed.

- 1. Looking only at segment BC, is it possible that a 180° rotation would map segment BC onto segment B'C'? Why or why not?
- 2. Looking only at segment AB, is it possible that a 180° rotation would map segment AB onto segment A'B'? Why or why not?

- 3. Looking only at segment AC, is it possible that a 180° rotation would map segment AC onto segment A'C'? Why or why not?
- 4. Connect point *B* to point *B'*, point *C* to point *C'*, and point *A* to point *A'*. What do you notice? What do you think that point is?
- 5. Would a rotation map triangle ABC onto triangle A'B'C'? If so, define the rotation (i.e., degree and center). If not, explain why not.
- 6. The picture below shows right triangles ABC and A'B'C', where the right angles are at B and B'. Given that AB = A'B' = 1, and BC = B'C' = 2, and that \overline{AB} is not parallel to $\overline{A'B'}$, is there a 180° rotation that would map $\triangle ABC$ onto $\triangle A'B'C'$? Explain.

