Lesson 6: Rotations of 180 Degrees

Classwork

Example 1

The picture below shows what happens when there is a rotation of 180° around center 0 .

Example 2

The picture below shows what happens when there is a rotation of 180° around center O, the origin of the coordinate plane.

Exercises 1-9

1. Using your transparency, rotate the plane 180 degrees, about the origin. Let this rotation be Rotation ${ }_{0}$. What are the coordinates of Rotation $(2,-4)$?

2. Let Rotation n_{0} be the rotation of the plane by 180 degrees, about the origin. Without using your transparency, find Rotation $_{0}(-3,5)$.

3. Let Rotation n_{0} be the rotation of 180 degrees around the origin. Let L be the line passing through $(-6,6)$ parallel to the x-axis. Find Rotation $_{0}(L)$. Use your transparency if needed.

4. Let Rotation ${ }_{0}$ be the rotation of 180 degrees around the origin. Let L be the line passing through $(7,0)$ parallel to the y-axis. Find Rotation (L). Use your transparency if needed.

5. Let Rotation ${ }_{0}$ be the rotation of 180 degrees around the origin. Let L be the line passing through $(0,2)$ parallel to the x-axis. Is L parallel to Rotation ${ }_{0}(L)$?

6. Let Rotation n_{0} be the rotation of 180 degrees around the origin. Let L be the line passing through $(4,0)$ parallel to the y-axis. Is L parallel to Rotation ${ }_{0}(L)$?

 to the x-axis. Is L parallel to Rotation $_{0}(L)$?

7. Let Rotation ${ }_{0}$ be the rotation of 180 degrees around the origin. Is L parallel to Rotation (L) ? Use your transparency if needed.

8. Let Rotation ${ }_{0}$ be the rotation of 180 degrees around the center O. Is L parallel to Rotation (L) ? Use your transparency if needed.

Lesson Summary

- A rotation of 180 degrees around O is the rigid motion so that if P is any point in the plane, P, O, and Rotation (P) are collinear (i.e., lie on the same line).
- Given a 180-degree rotation around the origin O of a coordinate system, R_{0}, and a point P with coordinates (a, b), it is generally said that $R_{0}(P)$ is the point with coordinates $(-a,-b)$.

Theorem: Let O be a point not lying on a given line L. Then, the 180-degree rotation around O maps L to a line parallel to L.

Problem Set

Use the following diagram for Problems 1-5. Use your transparency as needed.

1. Looking only at segment $B C$, is it possible that a 180° rotation would map segment $B C$ onto segment $B^{\prime} C^{\prime}$? Why or why not?
2. Looking only at segment $A B$, is it possible that a 180° rotation would map segment $A B$ onto segment $A^{\prime} B^{\prime}$? Why or why not?
3. Looking only at segment $A C$, is it possible that a 180° rotation would map segment $A C$ onto segment $A^{\prime} C^{\prime}$? Why or why not?
4. Connect point B to point B^{\prime}, point C to point C^{\prime}, and point A to point A^{\prime}. What do you notice? What do you think that point is?
5. Would a rotation map triangle $A B C$ onto triangle $A^{\prime} B^{\prime} C^{\prime}$? If so, define the rotation (i.e., degree and center). If not, explain why not.
6. The picture below shows right triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, where the right angles are at B and B^{\prime}. Given that $A B=A^{\prime} B^{\prime}=1$, and $B C=B^{\prime} C^{\prime}=2$, and that $\overline{A B}$ is not parallel to $\overline{A^{\prime} B^{\prime}}$, is there a 180° rotation that would map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$? Explain.

