Lesson 7: Sequencing Translations

Classwork

Exploratory Challenge

1.

a. Translate $\angle A B C$ and segment $E D$ along vector $\overrightarrow{F G}$. Label the translated images appropriately, that is, $\angle A^{\prime} B^{\prime} C^{\prime}$ and segment $E^{\prime} D^{\prime}$.
b. Translate $\angle A^{\prime} B^{\prime} C^{\prime}$ and segment $E^{\prime} D^{\prime}$ along vector $\overrightarrow{H I}$. Label the translated images appropriately, that is, $\angle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ and segment $E^{\prime \prime} D^{\prime \prime}$.
c. How does the size of $\angle A B C$ compare to the size of $\angle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$?
d. How does the length of segment $E D$ compare to the length of the segment $E^{\prime \prime} D^{\prime \prime}$?
e. Why do you think what you observed in parts (d) and (e) were true?
2. Translate $\triangle A B C$ along vector $\overrightarrow{F G}$, and then translate its image along vector $\overrightarrow{J K}$. Be sure to label the images appropriately.

3. Translate figure $A B C D E F$ along vector $\overrightarrow{G H}$. Then translate its image along vector $\overrightarrow{J I}$. Label each image appropriately.

4.

a. Translate Circle A and Ellipse E along vector $\overrightarrow{A B}$. Label the images appropriately.
b. Translate Circle A^{\prime} and Ellipse E^{\prime} along vector $\overrightarrow{C D}$. Label each image appropriately.
c. Did the size or shape of either figure change after performing the sequence of translations? Explain.
5. The picture below shows the translation of Circle A along vector $\overrightarrow{C D}$. Name the vector that maps the image of Circle A back to its original position.

6. If a figure is translated along vector $\overrightarrow{Q R}$, what translation takes the figure back to its original location?

Lesson Summary

- Translating a figure along one vector and then translating its image along another vector is an example of a sequence of transformations.
- A sequence of translations enjoys the same properties as a single translation. Specifically, the figures' lengths and degrees of angles are preserved.
- If a figure undergoes two transformations, F and G, and is in the same place it was originally, then the figure has been mapped onto itself.

Problem Set

1. Sequence translations of parallelogram $A B C D$ (a quadrilateral in which both pairs of opposite sides are parallel) along vectors $\overrightarrow{H G}$ and $\overrightarrow{F E}$. Label the translated images.

2. What do you know about $\overline{A D}$ and $\overline{B C}$ compared with $\overline{A^{\prime} D^{\prime}}$ and $\overline{B^{\prime} C^{\prime}}$? Explain.
3. Are the segments $A^{\prime} B^{\prime}$ and $A^{\prime \prime} B^{\prime \prime}$ equal in length? How do you know?
4. Translate the curved shape $A B C$ along the given vector. Label the image.

5. What vector would map the shape $A^{\prime} B^{\prime} C^{\prime}$ back onto shape $A B C$?
