Lesson 7: Sequencing Translations

Classwork

Exploratory Challenge

1.

- a. Translate $\angle ABC$ and segment ED along vector \overrightarrow{FG} . Label the translated images appropriately, that is, $\angle A'B'C'$ and segment E'D'.
- b. Translate $\angle A'B'C'$ and segment E'D' along vector \overrightarrow{HI} . Label the translated images appropriately, that is, $\angle A''B''C''$ and segment E''D''.
- c. How does the size of $\angle ABC$ compare to the size of $\angle A''B''C''$?

Lesson 7: Sequencing Translations

- How does the length of segment ED compare to the length of the segment E''D''?
- Why do you think what you observed in parts (d) and (e) were true?

2. Translate \triangle ABC along vector \overrightarrow{FG} , and then translate its image along vector \overrightarrow{JK} . Be sure to label the images appropriately.

Lesson 7:

Sequencing Translations

3. Translate figure \overrightarrow{ABCDEF} along vector \overrightarrow{GH} . Then translate its image along vector \overrightarrow{JI} . Label each image appropriately.

4.

- a. Translate Circle A and Ellipse E along vector \overrightarrow{AB} . Label the images appropriately.
- b. Translate Circle A' and Ellipse E' along vector \overrightarrow{CD} . Label each image appropriately.
- c. Did the size or shape of either figure change after performing the sequence of translations? Explain.

5. The picture below shows the translation of Circle A along vector \overrightarrow{CD} . Name the vector that maps the image of Circle A back to its original position.

6. If a figure is translated along vector \overrightarrow{QR} , what translation takes the figure back to its original location?

Lesson Summary

 Translating a figure along one vector and then translating its image along another vector is an example of a sequence of transformations.

- A sequence of translations enjoys the same properties as a single translation. Specifically, the figures' lengths and degrees of angles are preserved.
- If a figure undergoes two transformations, F and G, and is in the same place it was originally, then the figure has been mapped onto itself.

Problem Set

1. Sequence translations of parallelogram ABCD (a quadrilateral in which both pairs of opposite sides are parallel) along vectors \overrightarrow{HG} and \overrightarrow{FE} . Label the translated images.

- 2. What do you know about \overline{AD} and \overline{BC} compared with $\overline{A'D'}$ and $\overline{B'C'}$? Explain.
- 3. Are the segments A'B' and A''B'' equal in length? How do you know?

Lesson 7: Sequencing Translations

S.38

4. Translate the curved shape ABC along the given vector. Label the image.

5. What vector would map the shape A'B'C' back onto shape ABC?

Lesson 7: Sequencing Translations