Lesson 8: Similarity

Classwork

Example 1

In the picture below, we have a triangle $A B C$ that has been dilated from center O by a scale factor of $r=\frac{1}{2}$. It is noted by $A^{\prime} B^{\prime} C^{\prime}$. We also have triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, which is congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$ (i.e., $\Delta A^{\prime} B^{\prime} C^{\prime} \cong \Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$).

Describe the sequence that would map triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ onto triangle $A B C$.

Exercises

1. Triangle $A B C$ was dilated from center O by scale factor $r=\frac{1}{2}$. The dilated triangle is noted by $A^{\prime} B^{\prime} C^{\prime}$. Another triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$ (i.e., $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} \cong \Delta A^{\prime} B^{\prime} C^{\prime}$). Describe a dilation followed by the basic rigid motion that would map triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ onto triangle $A B C$.

2. Describe a sequence that would show $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$.

3. Are the two triangles shown below similar? If so, describe a sequence that would prove $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$ If not, state how you know they are not similar.

4. Are the two triangles shown below similar? If so, describe a sequence that would prove $\triangle A B C \sim \Delta A^{\prime} B^{\prime} C^{\prime}$. If not, state how you know they are not similar.

Lesson Summary

A similarity transformation (or a similarity) is a sequence of a finite number of dilations or basic rigid motions. Two figures are similar if there is a similarity transformation taking one figure onto the other figure. Every similarity can be represented as a dilation followed by a congruence.

The notation $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$ means that $\triangle A B C$ is similar to $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Problem Set

1. In the picture below, we have triangle $D E F$ that has been dilated from center O by scale factor $r=4$. It is noted by $D^{\prime} E^{\prime} F^{\prime}$. We also have triangle $D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$, which is congruent to triangle $D^{\prime} E^{\prime} F^{\prime}$ (i.e., $\Delta D^{\prime} E^{\prime} F^{\prime} \cong \Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$). Describe the sequence of a dilation, followed by a congruence (of one or more rigid motions), that would map triangle $D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ onto triangle $D E F$.

2. Triangle $A B C$ was dilated from center O by scale factor $r=\frac{1}{2}$. The dilated triangle is noted by $A^{\prime} B^{\prime} C^{\prime}$. Another triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$ (i.e., $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} \cong \Delta A^{\prime} B^{\prime} C^{\prime}$). Describe the dilation followed by the basic rigid motions that would map triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ onto triangle $A B C$.

3. Are the two figures shown below similar? If so, describe a sequence that would prove the similarity. If not, state how you know they are not similar.

4. Triangle $A B C$ is similar to triangle $A^{\prime} B^{\prime} C^{\prime}$ (i.e., $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$). Prove the similarity by describing a sequence that would map triangle $A^{\prime} B^{\prime} C^{\prime}$ onto triangle $A B C$.

5. Are the two figures shown below similar? If so, describe a sequence that would prove $\triangle A B C \sim \Delta A^{\prime} B^{\prime} C^{\prime}$. If not, state how you know they are not similar.

6. Describe a sequence that would show $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$.

