1. Which is an expression equivalent to $\sqrt{64}$?
A. 32
B. 2^{3}
C. 4^{2}
D. $4 \sqrt{16}$
2. If $y^{2}=100$, what is one possible value of y ?
A. $\sqrt{100}$
B. $\sqrt{50}$
C. $\sqrt{25}$
D. $\sqrt{5}$
3. Which model BEST represents $\sqrt{16}$?

B.

C.

8

8
D.

4. Which model BEST represents $\sqrt{625}$?
A.
B.25
25

C.
5
25

5. Which model BEST represents $\sqrt{256 \text { ? }}$
A.

B.

C.

D.
32
8

6. Which model BEST represents $\sqrt{196}$?
A.

B.

14

14

C. 49
D.

49

7. Aashi needs to solve $\sqrt{121}$ on her math homework. Which one of these models would be BEST for her to use?
A. 11
11
B. 10

C.10

D.

12
8. In the equation $x^{3}=8$, what is the value of \boldsymbol{x} ?
A. $\sqrt[3]{512}$
B. $\sqrt[3]{64}$
C. $\sqrt[3]{24}$
D. $\sqrt{8}$
9. Which represents the solution to $x^{3}=512$?
A. $x=\sqrt[3]{512}$
B. $x=512^{3}$
C. $x=512^{2}$
D. $x=\sqrt{512}$
10. The number $\sqrt{10}$ can be represented by which of the following geometric models?
A. The perimeter of a square with an area of 100 square units
B. The side of a square with a perimeter of 10 units
C. The perimeter of a square with sides of $\frac{\sqrt{10}}{4}$ units in length
D. The side of a square with an area of 10 square units

Which value below represents the side length of this square, in inches?
A. $\sqrt{21^{2}}$
B. $\frac{21}{2}$
C. $\frac{21}{4}$
D. $\sqrt{21}$
12. The figure below models a square with an area of $\mathbf{1 2 1}$ square meters.

Which expression BEST represents the length, in meters, of each side of the square?
A. $\sqrt{121^{2}}$
B. $\frac{121}{4}$
C. 4×121
D. $\sqrt{121}$
13. Given $144=12^{2}$, which statement is true?
A. $144^{2}=12$
B. $\sqrt{144^{2}}=12$
C. $\sqrt{12^{2}}=144$
D. $\sqrt{144}=12$
14. Given $5=\sqrt{25}$, which statement is true?
A. $25^{2}=5$
B. $\sqrt{5}=25$
C. 25 is the area of a square whose side has length 5 .
D. 25 is the perimeter of a square whose side has length 5 .
15. Given $\sqrt{49}=7$, which of the following statements is true?
A. $\sqrt{7}=49$
B. $49^{2}=7$
C. 7 is the length of the side of a square whose area is 49 .
D. 7 is the length of the side of a square whose perimeter is 49 .
16. Which statement is justified by $14^{2}=196$?
A. 14 is a perfect square.
B. 196 is a perfect square.
C. $\sqrt{14}=196$
D. $196^{2}=14$
17. Marsha cut out a square piece of fabric with an area of $\mathbf{3 2}$ square feet. Which expression could be used to find the side length of the fabric?
A. $32-4$
B. $32 \div 4$
C. $\sqrt{32}-4$
D. $\sqrt{32}$
18. If $8^{2}=64$, which statement is true?
A. $\sqrt{8}=64$
B. $\sqrt{64}=8$
C. $81=8^{2}$
D. $64^{2}=8$
19. The side lengths of four squares are represented in two different ways in the table below.

Four Squares

Square A	2 units	$\sqrt{4}$ units
Square B	4 units	$\sqrt{16}$ units
Square C	5 units	$\sqrt{25}$ units
Square D	7 units	$\sqrt{49}$ units

What is another way to represent the side length of a square with a side length of $\mathbf{1 1}$ units?
A. $\sqrt{11}$
B. $\sqrt{55}$
C. $\sqrt{121}$
D. $\sqrt{144}$
20. In the equation $x^{3}=8$, what is the value of x ?
A. 2
B. $\frac{8}{3}$
C. 5
D. 24
21. What is the value of the expression $\sqrt[3]{1000}$?
A. 3000
B. 100
C. 30
D. 10
22. Which equation has an irrational solution?
A. $x^{2}=2$
B. $x^{2}=81$
C. $x^{3}=27$
D. $x^{3}=64$
23. If $x^{2}=81$ then $x=9$ or $x=-9$ Which equation shows why this statement is correct?
A. $9^{2}=\left(-9^{2}\right)$
B. $\sqrt{81}=\sqrt{-81}$
C. $(9)(-9)=(9)(-9)$
D. $\frac{-81}{9}=\frac{81}{-9}$
24. What is the value of $\sqrt{16}$?
A. 4
B. 8
C. 16
D. 32
25. Which expression has a value of 10 ?
A. $\sqrt[3]{13}$
B. $\sqrt{5}$
c. $\sqrt[3]{30}$
D. $\sqrt{100}$
26.

What is the value of z when $z^{3}=\frac{64}{27}$?
A.

B. $\sqrt[3]{\frac{64}{27}}$
C.
$\frac{64}{27(3)}$
D.
$\frac{64^{3}}{27^{3}}$
27. If $x^{2}=7$ what is a value of x ?
A. $\sqrt{7}$
B. 3.5
C. $\sqrt{49}$
D. 14
28. Which statement is true?
A. $\sqrt{2}$ is rational because it can be written as an integer.
B.
$\sqrt{2}$ is rational because it can be written as $\frac{a}{b}$ or $\frac{-a}{b}$ where a and b are integers and $b \neq 0$.
C. $\sqrt{2}$ is irrational because it cannot be written as a terminating decimal.
D.
$\sqrt{2}$ is irrational because it cannot be written as $\frac{a}{b}$ where a and b are integers and $b \neq 0$.
29. What is the solution to $x^{2}=16$?
A. $x=-4$ or $x=4$
B. $x=-8$ or $x=8$
C. $x=-32$ or $x=32$
D. $x=-256$ or $x=256$
30. What is the value of x in the equation $x=\sqrt[3]{27}$?
A. $x=3$
B. $x=9$
C. $x \pm 3$
D. $x \pm 9$
31.

$$
x^{2}=169 ?
$$

Which expression shows the value of x in the equation
A. $\pm \sqrt{13}$
B. $\pm \frac{13}{2}$
C. $\pm \sqrt{169}$
D. $\pm \frac{169}{2}$
32. Tim bought 128 sandbags to completely fill a cube-shaped sandbox. Each bag fills a cubic foot in the sandbox. What is the length, in feet, of one of the sides of the sandbox?
A. $\sqrt{128}$
B. $\sqrt[3]{128}$
C. 128^{2}
D. 128^{3}
33. What is the value of x in the equation $512 x^{3}=8$?
A. $\sqrt[3]{\frac{1}{4}}$
B. $\frac{1}{4}$
c. $\sqrt[3]{4}$
D. ${ }^{4}$
34. Which expression has a value that is irrational?
A. 2^{2}
B. $\sqrt{4}$
C. $2 \sqrt{2}$
D. $(\sqrt{2})^{2}$
35. What is the value of the expression $\sqrt[3]{216}$?
A. 72
B. 27
C. 8
D. 6
36. Which expression represents the value of x in the equation below?

$$
x^{2}=25
$$

A. $\sqrt{5}$
B. $\sqrt{25}$
C. 5^{2}
D. 25^{2}
37. Which expression could represent the value of x in the equation below?

$$
x^{3}=2
$$

A. $\frac{2}{3}$
B. 2^{3}
C. $\sqrt[3]{2}$
D. $2 \cdot 3$
38. The volume of a cube is 125 cubic centimeters. How many centimeters long is each edge of the cube?
A. 5 centimeters
B. 11 centimeters
C. 15 centimeters
D. 42 centimeters
39. An electric company charges its residential customers $\$ 0.13$ per kWh with a fixed monthly charge of $\$ 16$. If a customer uses ${ }^{x \mathrm{kWh}}$ of electricity in a month, which of these functions represents the total monthly bill?
A. $g(x)=0.13 x$
B. $g(x)=16 x$
C. $g(x)=0.13 x+16$
D. $g(x)=16 x+0.13$
40. The table below shows the value of Henry's car for each of the first 3 years after it is purchased. The values form a geometric sequence.

Year	Value (in dollars)
1	16,000
2	12,800
3	10,240

What will be the approximate value of the car in the 10th year?
A. $\$ 2,150$
B. $\$ 2,680$
C. $\$ 5,240$
D. $\$ 6,550$

