Rotations

A rotation in this direction is called clockwise...

...and the opposite direction is called counterclockwise.

A coordinate plane is divided by a vertical y-axis and a horizontal x -axis into four quadrants. These are labeled in a counterclockwise direction using Roman numerals.

Unless told otherwise, rotations are graphed moving in a counterclockwise direction.

Since a circle consists of 360°, a 90° rotation would move onequarter of the way around the circle, a 180° rotation would move half-way around, and a 270° rotation would travel three-quarters of the way around the circle.

$$
\begin{aligned}
& 90^{\circ} \rightarrow \text { moves } 1 \text { quadrant } \\
& 180^{\circ} \rightarrow \text { moves } 2 \text { quadrants } \\
& 270^{\circ} \rightarrow \text { moves } 3 \text { quadrants }
\end{aligned}
$$

Label your paper 1-20, then answer these questions.
In which quadrant will each point finish after being rotated the given distance and direction?

Starts in Quadrant		Moves	In this Direction
1.	I	270	Clockwise
2.	II	90	Clockwise
3.	III	180	Counterclockwise
4.	IV	90	Counterclockwise
5.	I	180	Clockwise
6.	II	90	Counterclockwise
7.	III	270	Counterclockwise
8.	IV	270	Counterclockwise
9.	I	90	Clockwise
10.	II	180	Counterclockwise

For the next ten problems, give the new coordinates of the rotated point. To rotate a point clockwise, turn your paper (or computer) one, two or three turns counterclockwise. To rotate a point counterclockwise, rotate your paper clockwise.

	Original Point	Moves	In this Direction
11.	$(15,6)$	90	Counterclockwise
12.	$(-7,9)$	270	Clockwise
13.	$(-29,-4)$	180	Counterclockwise

14.	$(8,-5)$	90	Counterclockwise
15.	$(4,0)$	180	Clockwise
16.	$(0,-3)$	90	Counterclockwise
17.	$(-132,-11)$	270	Counterclockwise
18.	$(7,4)$	270	Counterclockwise
19.	$(-3,3)$	90	Clockwise
20.	$(100,2)$	180	Counterclockwise

