$$
\begin{aligned}
\mathrm{a}^{2}+\mathrm{b}^{2} & =\mathrm{c}^{2} \\
\mathrm{a}=\mathrm{b}, \text { so: } \mathrm{a}^{2}+\mathrm{a}^{2} & =\mathrm{c}^{2} \\
12^{2}+12^{2} & =\mathrm{c}^{2} \\
144+144 & =\mathrm{c}^{2} \\
288 & =\mathrm{c}^{2} \\
\sqrt{288} & =c \\
17.0 & =c
\end{aligned}
$$

12

(tick marks mean side lengths are congruent, or equal)

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
a=b, \text { so: } a^{2}+\ldots & =c^{2} \\
\overline{17^{2}} & =c^{2} \\
289+\ldots & =c^{2} \\
\overline{\sqrt{578}} & =c^{2} \\
24.0 & =c
\end{aligned}
$$

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
a=b, \text { so: } \ldots+\ldots & =c^{2} \\
20^{2}+\ldots & =c^{2} \\
+\ldots & =c^{2} \\
800 & =c^{2} \\
\sqrt{\square} & =c \\
- & =c
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{a}^{2}+\mathrm{b}^{2} & =\mathrm{c}^{2} \\
\mathrm{a}=\mathrm{b}, \mathrm{so}: \mathrm{a}^{2}+\mathrm{a}^{2} & =- \\
3.2^{2}+3.2^{2} & = \\
+\ldots & = \\
-\ldots & = \\
-\quad & =\mathrm{c} \\
- & =
\end{aligned}
$$

Another Method

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
2\left(a^{2}\right) & =c^{2} \\
2\left(14^{2}\right) & =c^{2} \\
2(196) & =c^{2} \\
392 & =c^{2} \\
\sqrt{392} & =c \\
19.8 & =c
\end{aligned}
$$

$$
\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}
$$

$$
a=b, \text { so: } 2(\ldots)=c^{2}
$$

$$
\ldots\left(ـ^{2}\right)=
$$

$$
2(\ldots)=c^{2}
$$

$$
\ldots=c^{2}
$$

$$
\sqrt{20,000}=c
$$

$$
\ldots=\mathrm{c}
$$

$$
\mathrm{a}=\mathrm{b}, \text { so: } \quad \begin{aligned}
\mathrm{a}^{2}+\mathrm{b}^{2} & =\mathrm{c}^{2} \\
\mathrm{a}^{2}+\mathrm{a}^{2} & =\mathrm{c}^{2} \\
1^{2}+1^{2} & =\mathrm{c}^{2} \\
1+1 & =\mathrm{c}^{2} \\
2 & =\mathrm{c}^{2} \\
\sqrt{2} & =\mathrm{c}
\end{aligned}
$$

In all isosceles right triangles, the ration of the legs to the hypotenuse is $1: 1: \sqrt{2}$. In addition to the 90° angle, the other two angles are each 45°. To find the hypotenuse of a right isosceles triangle, you can multiply the length of either leg by $\sqrt{2}$. For example, in problem 2 above, which has a triangle with legs of 17 units, we found the hypotenuse to be 24.0. On your calculator, multiply $\sqrt{2} \times 17$ to get: 24.0416 .

Use this method to find the hypotenuse of right isosceles triangles with legs which measure:
\qquad
\qquad
\qquad

