

Another Method

$a^{2} + b^{2} = c^{2}$ $a = b, so: 2(a^{2}) = c^{2}$ $2(14^{2}) = c^{2}$ $2(196) = c^{2}$ $392 = c^{2}$ $\sqrt{392} = c$ $19.8 = c$	14
$a^{2} + b^{2} = c^{2}$ $a = b, so: 2(\) = c^{2}$ $(\2) = _$ $2(\) = c^{2}$ $= c^{2}$ $\sqrt{20,000} = c$ $_ = c$	
$a^{2} + b^{2} = c^{2}$ $a = b, so: a^{2} + a^{2} = c^{2}$ $1^{2} + 1^{2} = c^{2}$ $1 + 1 = c^{2}$ $2 = c^{2}$ $\sqrt{2} = c$	$1 + \sqrt{2}$ 1

In all isosceles right triangles, the ration of the legs to the hypotenuse is $1:1:\sqrt{2}$. In addition to the 90° angle, the other two angles are each 45°. To find the hypotenuse of a right isosceles triangle, you can multiply the length of either leg by $\sqrt{2}$. For example, in problem 2 above, which has a triangle with legs of 17 units, we found the hypotenuse to be 24.0. On your calculator, multiply $\sqrt{2} \times 17$ to get: 24.0416.

Use this method to find the hypotenuse of right isosceles triangles with legs which measure:

28.6	135.89	13,480